ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal filtered quantizations of nilpotent Slodowy slices

122   0   0.0 ( 0 )
 نشر من قبل Lewis Topley Dr
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Every conic symplectic singularity admits a universal Poisson deformation and a universal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by showing that every such variety admits a universal equivariant Poisson deformation and universal equivariant quantization with respect to any group acting on it by $mathbb{C}^times$-equivariant Poisson automorphisms. We go on to study these definitions in the context of nilpotent Slodowy slices. First we give a complete description of the cases in which the finite $W$-algebra is the universal filtered quantization of the slice, building on the work of Lehn--Namikawa--Sorger. This leads to a near-complete classification of the filtered quantizations of nilpotent Slodowy slices. The subregular slices in non-simply-laced Lie algebras are especially interesting: with some minor restrictions on Dynkin type we prove that the finite $W$-algebra is the universal equivariant quantization with respect to the Dynkin automorphisms coming from the unfolding of the Dynkin diagram. This can be seen as a non-commutative analogue of Slodowys theorem. Finally we apply this result to give a presentation of the subregular finite $W$-algebra in type B as a quotient of a shifted Yangian.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a generalization of G-opers for arbitrary parabolic subgroups P<G. For parabolic subgroups associated to even nilpotents, we parameterize (G,P)-opers by an object generalizing the base of the Hitchin fibration. In particul ar, we describe families of opers associated to higher Teichmuller spaces.
According to a well-known theorem of Brieskorn and Slodowy, the intersection of the nilpotent cone of a simple Lie algebra with a transverse slice to the subregular nilpotent orbit is a simple surface singularity. At the opposite extremity of the nil potent cone, the closure of the minimal nilpotent orbit is also an isolated symplectic singularity, called a minimal singularity. For classical Lie algebras, Kraft and Procesi showed that these two types of singularities suffice to describe all generic singularities of nilpotent orbit closures: specifically, any such singularity is either a simple surface singularity, a minimal singularity, or a union of two simple surface singularities of type $A_{2k-1}$. In the present paper, we complete the picture by determining the generic singularities of all nilpotent orbit closures in exceptional Lie algebras (up to normalization in a few cases). We summarize the results in some graphs at the end of the paper. In most cases, we also obtain simple surface singularities or minimal singularities, though often with more complicated branching than occurs in the classical types. There are, however, six singularities which do not occur in the classical types. Three of these are unibranch non-normal singularities: an $SL_2(mathbb C)$-variety whose normalization is ${mathbb A}^2$, an $Sp_4(mathbb C)$-variety whose normalization is ${mathbb A}^4$, and a two-dimensional variety whose normalization is the simple surface singularity $A_3$. In addition, there are three 4-dimensional isolated singularities each appearing once. We also study an intrinsic symmetry action on the singularities, in analogy with Slodowys work for the regular nilpotent orbit.
95 - Eric Sommers 2002
We determine which nilpotent orbits in $E_6$ have normal closure and which do not. We also verify a conjecture about small representations in rings of functions on nilpotent orbit covers for type $E_6$.
311 - Ben Johnson , Eric Sommers 2017
Let $mathcal{O}$ be a Richardson nilpotent orbit in a simple Lie algebra $mathfrak{g}$ over $mathbb C$, induced from a Levi subalgebra whose simple roots are orthogonal short roots. The main result of the paper is a description of a minimal set of ge nerators of the ideal defining $overline{ mathcal{O}}$ in $S mathfrak{g}^*$. In such cases, the ideal is generated by bases of at most two copies of the representation whose highest weight is the dominant short root, along with some fundamental invariants. This extends Broers result for the subregular nilpotent orbit. Along the way we give another proof of Broers result that $overline{ mathcal{O}}$ is normal. We also prove a result connecting a property of invariants related to flat bases to the question of when one copy of the adjoint representation is in the ideal in $S mathfrak{g}^*$ generated by another copy of the adjoint representation and the fundamental invariants.
198 - Anne Moreau 2014
We study in this paper the jet schemes of the closure of nilpotent orbits in a finite-dimensional complex reductive Lie algebra. For the nilpotent cone, which is the closure of the regular nilpotent orbit, all the jet schemes are irreducible. This wa s first observed by Eisenbud and Frenkel, and follows from a strong result of Mustau{t}c{a} (2001). Using induction and restriction of little nilpotent orbits in reductive Lie algebras, we show that for a large number of nilpotent orbits, the jet schemes of their closure are reducible. As a consequence, we obtain certain geometrical properties of these nilpotent orbit closures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا