ﻻ يوجد ملخص باللغة العربية
We study the impact of SU(3) flavor symmetry breaking on the properties of dynamically generated $Lambda^*$ states within an effective separable potential model describing the coupled channels $bar{K}N$ system. The model is based on the chiral meson-baryon Lagrangian at next-to-leading order, and constitutes an improvement over a previous model developed by our group, with its applicability being extended to higher energies covering the $Lambda(1670)$ resonance region. It is demonstrated that the ratios of channel couplings to the resonant states can vary dramatically when the flavor breaking is gradually switched off, tracing a path to the restored SU(3) symmetry. We conclude that the couplings determined from physical observables cannot be used to reliably relate a given resonance to a specific flavor multiplet.
We investigate the $bar KN$ and coupled channels system in a finite volume and study the properties of the $Lambda(1405)$ resonance. We calculate the energy levels in a finite volume and solve the inverse problem of determining the resonance position
Starting with the quaternionic formulation of isospin SU(2) group, we have derived the relations for different components of isospin with quark states. Extending this formalism to the case of SU(3) group we have considered the theory of octonion vari
The weak and electromagnetic radiative baryon decays of octet $T_{8}$, decuplet $T_{10}$, single charmed anti-triplet $T_{c3}$ and sextet $T_{c6}$, single heavy bottomed anti-triplet $T_{b3}$ and sextet $T_{b6}$ are investigated by using SU(3) flavor
We study the three-body anti-triplet ${bf B_c}to {bf B_n}MM$ decays with the $SU(3)$ flavor ($SU(3)_f$) symmetry, where ${bf B_c}$ denotes the charmed baryon anti-triplet of $(Xi_c^0,-Xi_c^+,Lambda_c^+)$, and ${bf B_n}$ and $M(M)$ represent baryon an
In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetry is used to describe charmed meson-antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the he