ﻻ يوجد ملخص باللغة العربية
We investigated the gate control of a two-dimensional electron gas (2DEG) confined to InSb quantum wells with an Al2O3 gate dielectric formed by atomic layer deposition on a surface layer of Al0.1In0.9Sb or InSb. The wider bandgap of Al0.1In0.9Sb compared to InSb resulted in a linear, sharp, and non-hysteretic response of the 2DEG density to gate bias in the structure with an Al0.1In0.9Sb surface layer. In contrast, a nonlinear, slow, and hysteretic (nonvolatile-memory-like) response was observed in the structure with an InSb surface layer. The 2DEG with the Al0.1In0.9Sb surface layer was completely depleted by application of a small gate voltage (-0.9 V).
We investigate an electrostatically defined quantum point contact in a high-mobility InSb two-dimensional electron gas. Well-defined conductance plateaus are observed, and the subband structure of the quantum point contact is extracted from finite-bi
Indium antimonide (InSb) two-dimensional electron gases (2DEGs) have a unique combination of material properties: high electron mobility, strong spin-orbit interaction, large Land{e} g-factor, and small effective mass. This makes them an attractive p
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP subst
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the
We report magnetotransport measurements of a gated InSb quantum well (QW) with high quality Al2O3 dielectrics (40 nm thick) grown by atomic layer deposition. The magnetoresistance data demonstrate a parallel conduction channel in the sample at zero g