ﻻ يوجد ملخص باللغة العربية
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP substrates. The nearly constant mobility for samples with the setback distance larger than 50nm and the similarity between the quantum and transport life-time suggest that the main scattering mechanism is due to short range scattering, such as alloy scattering, with a scattering rate of 2.2 ps$^{-1}$. We also obtain the Fermi level at the In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As surface to be 0.36eV above the conduction band, when fitting our experimental densities with a Poisson-Schrodinger model.
We report observation of magneto-electric photocurrent generated via direct inter-band transitions in an InGaAs/InAlAs two-dimensional electron gas excited by a linearly polarized incident light.The electric current is proportional to the in-plane ma
We observe an unusual behavior of the low-temperature magnetoresistance of the high-mobility two-dimensional electron gas in InGaAs/InAlAs quantum wells in weak perpendicular magnetic fields. The observed magnetoresistance is qualitatively similar to
Converse effect of spin photocurrent and current induced spin polarization are experimentally demonstrated in the same two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measu
Polariton lattice condensates provide a platform for on chip quantum emulations. Interactions in extended polariton lattices are currently limited by the intrinsic photonic disorder of microcavities. Here, we fabricate a strain compensated planar GaA
A two-dimensional (2D) electron gas formed in a modulation-doped GaAs/AlGaAs single quantum well undergoes a first-order transition when the first excited subband is occupied with electrons, as the Fermi level is tuned into resonance with the excited