ترغب بنشر مسار تعليمي؟ اضغط هنا

Clues to the Formation of Lenticular Galaxies Using Spectroscopic Bulge-Disk Decomposition

132   0   0.0 ( 0 )
 نشر من قبل Evelyn Johnston
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lenticular galaxies have long been thought of as evolved spirals, but the processes involved to quench the star formation are still unclear. By studying the individual star formation histories of the bulges and disks of lenticulars, it is possible to look for clues to the processes that triggered their transformation from spirals. To accomplish this feat, we present a new method for spectroscopic bulge-disk decomposition, in which a long-slit spectrum is decomposed into two one-dimensional spectra representing purely the bulge and disk light. We present preliminary results from applying this method to lenticular galaxies in the Virgo and Fornax Clusters, in which we show that the most recent star formation activity in these galaxies occurred within the bulges. We also find that the bulges are in general more Fe-enriched than the disks of the same galaxy, and that this enrichment grows stronger as the age of the bulge becomes younger. These results point towards a scenario where the star formation in the disks of spiral galaxies are quenched, followed by a burst of star formation in the central regions from the gas that has been funnelled inwards through the disk.



قيم البحث

اقرأ أيضاً

A new method for spectroscopic bulge-disc decomposition is presented, in which the spatial light profile in a two-dimensional spectrum is decomposed wavelength-by-wavelength into bulge and disc components, allowing separate one-dimensional spectra fo r each component to be constructed. This method has been applied to observations of a sample of nine S0s in the Fornax Cluster in order to obtain clean high-quality spectra of their individual bulge and disc components. So far this decomposition has only been fully successful when applied to galaxies with clean light profiles, consequently limiting the number of galaxies that could be separated into bulge and disc components. Lick index stellar population analysis of the component spectra reveals that in those galaxies where the bulge and disc could be distinguished, the bulges have systematically higher metallicities and younger stellar populations than the discs. This correlation is consistent with a picture in which S0 formation comprises the shutting down of star formation in the disc accompanied by a final burst of star formation in the bulge. The variation in spatial-fit parameters with wavelength also allows us to measure approximate colour gradients in the individual components. Such gradients were detected separately in both bulges and discs, in the sense that redder light is systematically more centrally concentrated in all components. However, a search for radial variations in the absorption line strengths determined for the individual components revealed that they are absent from the vast majority of S0 discs and bulges. The absence of gradients in line indices for most galaxies implies that the colour gradient cannot be attributed to age or metallicity variations, and is therefore most likely associated with varying degrees of obscuration by dust.
We present the results from a study of the morphologies of moderate luminosity X-ray selected AGN host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multi-wavelength morpholo gical decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sersic and multiple Sersic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sersic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are mixed systems which have higher bulge fractions than the control sample in our highest redshift bins at the >99.7% confidence level, according to all model fits even those which adopt a point-source component. This serves to alleviate concerns that previous, purely single Sersic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This dataset allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity, and that these point-source components are best modelled physically by nuclear starbursts. Our analysis of the bulge and disk fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.
We analyse the chemical properties of a set of solar vicinity stars, and show that the small dispersion in abundances of alpha-elements at all ages provides evidence that the SFH has been uniform throughout the thick disk. In the context of long time scale infall models, we suggest that this result points either to a limited dependence of the gas accretion on the Galactic radius in the inner disk (R<10 kpc), or to a decoupling of the accretion history and star formation history due to other processes governing the ISM in the early disk, suggesting that infall cannot be a determining parameter of the chemical evolution at these epochs. We argue however that these results and other recent observational constraints -- namely the lack of radial metallicity gradient and the non-evolving scale length of the thick disk -- are better explained if the early disk is viewed as a pre-assembled gaseous system, with most of the gas settled before significant star formation took place -- formally the equivalent of a closed-box model. In any case, these results point to a weak, or non-existent inside-out formation history in the thick disk, or in the first 3-5 Gyr of the formation of the Galaxy. We argue however that the growing importance of an external disk whose chemical properties are distinct from those of the inner disk would give the impression of an inside-out growth process when seen through snapshots at different epochs. However, the progressive, continuous process usually invoked may not have actually existed in the Milky Way.
154 - M. Das 2012
We present GMRT 1280 MHz radio continuum observations and follow-up optical studies of the disk and nuclear star formation in a sample of low luminosity bulgeless galaxies. The main aim is to understand bulge formation and overall disk evolution in t hese late type galaxies. We detected radio continuum from five of the twelve galaxies in our sample; the emission is mainly associated with disk star formation. Only two of the detected galaxies had extended radio emission; the others had patchy disk emission. In the former two galaxies, NGC3445 and NGC4027, the radio continuum is associated with star formation triggered by tidal interactions with nearby companion galaxies. We did follow-up Halpha imaging and nuclear spectroscopy of both galaxies using the Himalayan Chandra Telescope (HCT). The Halpha emission is mainly associated with the strong spiral arms. The nuclear spectra indicate ongoing nuclear star formation in NGC3445 and NGC4027 which maybe associated with nuclear star clusters. No obvious signs of AGN activity were detected. Although nearly bulgeless, both galaxies appear to have central oval distortions in the R band images; these could represent pseudobulges that may later evolve into large bulges. We thus conclude that tidal interactions are an important means of bulge formation and disk evolution in bulgeless galaxies; without such triggers these galaxies appear to be low in star formation and overall disk evolution.
149 - C. N. Lackner , J. E. Gunn 2012
We present a set of bulge-disk decompositions for a sample of 71,825 SDSS main-sample galaxies in the redshift range 0.003<z<0.05. We have fit each galaxy with either a de Vaucouleurs (classical) or an exponential (pseudo-) bulge and an exponential d isk. Two dimensional Sersic fits are performed when the 2-component fits are not statistically significant or when the fits are poor, even in the presence of high signal-to-noise. We study the robustness of our 2-component fits by studying a bright subsample of galaxies and we study the systematics of these fits with decreasing resolution and S/N. Only 30% of our sample have been fit with two-component fits in which both components are non-zero. The g-r and g-i colours of each component for the two-component models are determined using linear templates derived from the r-band model. We attempt a physical classification of types of fits into disk galaxies, pseudo-bulges, classical bulges, and ellipticals. Our classification of galaxies agrees well with previous large B+D decomposed samples. Using our galaxy classifications, we find that Petrosian concentration is a good indicator of B/T, while overall Sersic index is not. Additionally, we find that the majority of green valley galaxies are bulge+disk galaxies. Furthermore, in the transition from green to red B+D galaxies, the total galaxy colour is most strongly correlated with the disk colour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا