ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation in bulgeless late type galaxies: clues to their evolution

167   0   0.0 ( 0 )
 نشر من قبل Mousumi Das
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Das




اسأل ChatGPT حول البحث

We present GMRT 1280 MHz radio continuum observations and follow-up optical studies of the disk and nuclear star formation in a sample of low luminosity bulgeless galaxies. The main aim is to understand bulge formation and overall disk evolution in these late type galaxies. We detected radio continuum from five of the twelve galaxies in our sample; the emission is mainly associated with disk star formation. Only two of the detected galaxies had extended radio emission; the others had patchy disk emission. In the former two galaxies, NGC3445 and NGC4027, the radio continuum is associated with star formation triggered by tidal interactions with nearby companion galaxies. We did follow-up Halpha imaging and nuclear spectroscopy of both galaxies using the Himalayan Chandra Telescope (HCT). The Halpha emission is mainly associated with the strong spiral arms. The nuclear spectra indicate ongoing nuclear star formation in NGC3445 and NGC4027 which maybe associated with nuclear star clusters. No obvious signs of AGN activity were detected. Although nearly bulgeless, both galaxies appear to have central oval distortions in the R band images; these could represent pseudobulges that may later evolve into large bulges. We thus conclude that tidal interactions are an important means of bulge formation and disk evolution in bulgeless galaxies; without such triggers these galaxies appear to be low in star formation and overall disk evolution.



قيم البحث

اقرأ أيضاً

We develop a four-phase galaxy evolution model in order to study the effect of accretion of extra-galactic gas on the star formation rate (SFR) of a galaxy. Pure self-regulated star formation of isolated galaxies is replaced by an accretion-regulated star formation mode. The SFR settles into an equlibrium determined entirely by the gas accretion rate on a Gyr time scale.
We use Halpha and FUV GALEX data for a large sample of nearby objects to study the high mass star formation activity of normal late-type galaxies. The data are corrected for dust attenuation using the most accurate techniques at present available, na mely the Balmer decrement and the total far-infrared to FUV flux ratio. The sample shows a highly dispersed distribution in the Halpha to FUV flux ratio indicating that two of the most commonly used star formation tracers give star formation rates with uncertainties up to a factor of 2-3. The high dispersion is due to the presence of AGN, where the UV and the Halpha emission can be contaminated by nuclear activity, highly inclined galaxies, for which the applied extinction corrections are probably inaccurate, or starburst galaxies, where the stationarity in the star formation history required for transforming Halpha and UV luminosities into star formation rates is not satisfied. Excluding these objects we reach an uncertainty of ~50% on the SFR. The Halpha to FUV flux ratio increases with their total stellar mass. If limited to normal star forming galaxies, however, this relationship reduces to a weak trend that might be totally removed using different extinction correction recipes. In these objects the Halpha to FUV flux ratio seems also barely related with the FUV-H colour, the H band effective surface brightness, the total star formation activity and the gas fraction. The data are consistent with a Kroupa and Salpeter initial mass function in the high mass stellar range and imply, for a Salpeter IMF, that the variations of the slope cannot exceed 0.25, from g=2.35 for massive galaxies to g=2.60 in low luminosity systems. We show however that these observed trends, if real, can be due to the different micro history of star formation in massive galaxies with respect to dwarf.
Combining the catalogue of galaxy morphologies in the COSMOS field and the sample of H$alpha$ emitters at redshifts $z=0.4$ and $z=0.84$ of the HiZELS survey, we selected $sim$ 220 star-forming bulgeless systems (Sersic index $n leq 1.5$) at both epo chs. We present their star formation properties and we investigate their contribution to the star formation rate function (SFRF) and global star formation rate density (SFRD) at $z < 1$. For comparison, we also analyse H$alpha$ emitters with more structurally evolved morphologies that we split into two classes according to their Sersic index $n$: intermediate ($ 1.5 < n leq 3 $) and bulge-dominated ($n > 3$). At both redshifts the SFRF is dominated by the contribution of bulgeless galaxies and we show that they account for more than 60% of the cosmic SFRD at $z < 1$. The decrease of the SFRD with redshift is common to the three morphological types but it is stronger for bulge-dominated systems. Star-forming bulgeless systems are mostly located in regions of low to intermediate galaxy densities ($Sigma sim 1 - 4$ Mpc$^{-2}$) typical of field-like and filament-like environments and their specific star formation rates (sSFRs) do not appear to vary strongly with local galaxy density. Only few bulgeless galaxies in our sample have high (sSFR $>$ 10$^{-9}$ yr$^{-1}$) and these are mainly low-mass systems. Above $M_* sim 10^{10}$ M$_{odot}$ bulgeless are evolving at a normal rate (10$^{-9}$ yr$^{-1} <$ sSFR $<$10$^{-10}$ yr$^{-1}$) and in the absence of an external trigger (i.e. mergers/strong interactions) they might not be able to develop a central classical bulge.
The combination of huge databases of galaxy spectra and advances in evolutionary synthesis models in the past few years has renewed interest in an old question: How to estimate the star formation history of a galaxy out of its integrated spectrum? Fr esh approaches to this classical problem are making it possible to extract the best of both worlds, producing exquisite pixel-by-pixel fits to galaxy spectra with state-of-the-art stellar population models while at the same time exploring the fabulous statistics of mega-surveys to derive the star-formation and chemical enrichment histories of different types of galaxies with an unprecedented level of detail. This review covers some of these recent advances, focusing on results for late-type, star-forming galaxies, and outlines some of the issues which will keep us busy in the coming years.
121 - Linda C. Watson 2012
We study the relation between the surface density of gas and star formation rate in twenty moderately-inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30m telescope, HI emission line data from the VLA/EVLA, H-a lpha data from the MDM Observatory, and PAH emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v_circ). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally-stable disks at v_circ < 120 km/s (M_star <~ 10^10 M_sun) to narrow dust lanes with small scale heights and gravitationally-unstable disks at v_circ > 120 km/s. We find no transition in star formation efficiency (Sigma_SFR/Sigma_HI+H2) at v_circ = 120 km/s, or at any other circular velocity probed by our sample (v_circ = 46 - 190 km/s). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا