ﻻ يوجد ملخص باللغة العربية
We report on a systematic study of the stress transferred from an electromechanical piezo-stack into GaAs wafers under a wide variety of experimental conditions. We show that the strains in the semiconductor lattice, which were monitored in situ by means of X-ray diffraction, are strongly dependent on both the wafer thickness and on the selection of the glue which is used to bond the wafer to the piezoelectric actuator. We have identified an optimal set of parameters that reproducibly transfers the largest distortions at room temperature. We have studied strains produced not only by the frequently used uniaxial piezostressors but also by the biaxial ones which replicate the routinely performed experiments using substrate-induced strains but with the advantage of a continuously tunable lattice distortion. The time evolution of the strain response and the sample tilting and/or bending are also analyzed and discussed.
In this paper strain transfer efficiencies from single crystalline piezoelectric lead magnesium niobate-lead titanate (PMN-PT) substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) te
Graphite-like carbon nitride (g-$mathrm{C_3N_4}$) is considered as a promising candidate for energy materials. In this work, the biaxial strain (-4%-4%) effects on piezoelectric properties of g-$mathrm{C_3N_4}$ monolayer are studied by density functi
We report on domain formation and magnetization reversal in epitaxial Fe films on ferroelectric BaTiO3 substrates with ferroelastic a-c stripe domains. The Fe films exhibit biaxial magnetic anisotropy on top of c domains with out-of-plane polarizatio
Ever since high Tc superconductivity was discovered in La-based mixed oxide system by Bednorz and Muller, enormous efforts have been put in by several researchers around the world in understanding the origin and mechanism of superconductivity in thes
We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly