ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO3

217   0   0.0 ( 0 )
 نشر من قبل Sebastiaan van Dijken
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on domain formation and magnetization reversal in epitaxial Fe films on ferroelectric BaTiO3 substrates with ferroelastic a-c stripe domains. The Fe films exhibit biaxial magnetic anisotropy on top of c domains with out-of-plane polarization, whereas the in-plane lattice elongation of a domains induces uniaxial magnetoelastic anisotropy via inverse magnetostriction. The strong modulation of magnetic anisotropy symmetry results in full imprinting of the a-c domain pattern in the Fe films. Exchange and magnetostatic interactions between neighboring magnetic stripes further influence magnetization reversal and pattern formation within the a and c domains.



قيم البحث

اقرأ أيضاً

The integration of ferromagnetic and ferroelectric materials into hybrid heterostructures yields multifunctional systems with improved or novel functionality. We here report on the structural, electronic and magnetic properties of the ferromagnetic d ouble perovskite Sr2CrReO6, grown as epitaxial thin film onto ferroelectric BaTiO3. As a function of temperature, the crystal-structure of BaTiO3 undergoes phase transitions, which induce qualitative changes in the magnetic anisotropy of the ferromagnet. We observe abrupt changes in the coercive field of up to 1.2T along with resistance changes of up to 6.5%. These results are attributed to the high sensitivity of the double perovskites to mechanical deformation.
114 - F. Virot , L. Favre , R. Hayn 2012
For uniaxial easy axis films, properties of magnetic domains are usually described within the Kittel model, which assumes that domain walls are much thinner than the domains. In this work we present a simple model that includes a proper description o f the magnetostatic energy of domains and domain walls and also takes into account the interaction between both surfaces of the film. Our model describes the behavior of domain and wall widths as a function of film thickness, and is especially well suited for the strong stripe phase. We prove the existence of a critical value of magneto-crystalline anisotropy above which stripe domains exist for any film thickness and justify our model by comparison with exact results. The model is in good agreement with experimental data for hcp cobalt.
Temperature dependent magnetometry and transport measurements on epitaxial Fe3O4 films grown on BaTiO3(100) single crystals by molecular beam epitaxy show a series of discontinuities, that are due to changes in the magnetic anisotropy induced by stra in in the different crystal phases of BaTiO3. The magnetite film is under tensile strain at room temperature, which is ascribed to the lattice expansion of BaTiO3 at the cubic to tetragonal transition, indicating that the magnetite film is relaxed at the growth temperature. From the magnetization versus temperature curves, the variation in the magnetic anisotropy is determined and compared with the magnetoelastic anisotropies. These results demonstrate the possibility of using the piezoelectric response of BaTiO3 to modulate the magnetic anisotropy of magnetite films.
Rare earth free alloys are in focus of permanent magnet research since the accessibility of the elements needed for nowadays conventional magnets is limited. Tetragonally strained iron-cobalt (Fe-Co) has attracted large interest as promising candidat e due to theoretical calculations. In experiments, however, the applied strain quickly relaxes with increasing film thickness and hampers stabilization of a strong magnetocrystalline anisotropy. In our study we show that already 2 at% of carbon substantially reduce the lattice relaxation leading to the formation of a spontaneously strained phase with 3 % tetragonal distortion. In these strained (Fe$_{0.4}$Co$_{0.6}$)$_{0.98}$C$_{0.02}$ films, a magnetocrystalline anisotropy above 0.4 MJ/m$^3$ is observed while the large polarization of 2.1 T is maintained. Compared to binary Fe-Co this is a remarkable improvement of the intrinsic magnetic properties. In this paper, we relate our experimental work to theoretical studies of strained Fe-Co-C and find a very good agreement.
We investigated perpendicular magnetic anisotropy (PMA) and related properties of epitaxial Fe (0.7 nm)/MgAl2O4(001) heterostructures prepared by electron-beam evaporation. Using an optimized structure, we obtained a large PMA energy ~1 MJ/m3 at room temperature, comparable to that in ultrathin-Fe/MgO(001) heterostructures. Both the PMA energy and saturation magnetization show weak temperature dependence, ensuring wide working temperature in application. The effective magnetic damping constant of the 0.7 nm Fe layer was ~0.02 using time-resolved magneto-optical Kerr effect. This study demonstrates capability of the Fe/MgAl2O4 heterostructure for perpendicular magnetic tunnel junctions, as well as a good agreement with theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا