ﻻ يوجد ملخص باللغة العربية
First-order phase transitions in solids are notoriously challenging to study. The combination of change in unit cell shape, long range of elastic distortion, and flow of latent heat leads to large energy barriers resulting in domain structure, hysteresis, and cracking. The situation is still worse near a triple point where more than two phases are involved. The famous metal-insulator transition (MIT) in vanadium dioxide, a popular candidate for ultrafast optical and electrical switching applications, is a case in point. Even though VO2 is one of the simplest strongly correlated materials, experimental difficulties posed by the first-order nature of the MIT as well as the involvement of at least two competing insulating phases have led to persistent controversy about its nature. Here, we show that studying single-crystal VO2 nanobeams in a purpose-built nanomechanical strain apparatus allows investigation of this prototypical phase transition with unprecedented control and precision. Our results include the striking finding that the triple point of the metallic and two insulating phases is at the transition temperature, T_tr = T_c, which we determine to be 65.0 +- 0.1 C. The findings have profound implications for the mechanism of the MIT in VO2, but in addition they demonstrate the importance of such an approach for mastering phase transitions in many other strongly correlated materials, such as manganites and iron-based superconductors.
We investigate LiVS2 and LiVSe2 with a triangular lattice as itinerant analogues of LiVO2, known for the formation of valence bond solid (VBS) state out of S = 1 frustrated magnet. LiVS2, which is located at the border between a metal and a correlate
Soft x-ray spectroscopy is used to investigate the strain dependence of the metal-insulator transition of VO2. Changes in the strength of the V 3d - O 2p hybridization are observed across the transition, and are linked to the structural distortion. F
We present a theoretical investigation of the electronic structure of rutile (metallic) and M$_1$ and M$_2$ monoclinic (insulating) phases of VO$_2$ employing a fully self-consistent combination of density functional theory and embedded dynamical mea
The metal-insulator transition (MIT) of VO2 is discussed with particular emphasis on the structural instability of the rutile compounds toward dimerization. Ti substitution experiments reveal that the MIT is robust up to 20% Ti substitutions and occu
Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic underst