ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-insulator Transition in VO2: a DFT+DMFT perspective

130   0   0.0 ( 0 )
 نشر من قبل Walber Hugo de Brito
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical investigation of the electronic structure of rutile (metallic) and M$_1$ and M$_2$ monoclinic (insulating) phases of VO$_2$ employing a fully self-consistent combination of density functional theory and embedded dynamical mean field theory calculations. We describe the electronic structure of the metallic and both insulating phases of VO$_2$, and propose a distinct mechanism for the gap opening. We show that Mott physics plays an essential role in all phases of VO$_2$: undimerized vanadium atoms undergo classical Mott transition through local moment formation (in the M$_2$ phase), while strong superexchange within V-dimers adds significant dynamic intersite correlations, which remove the singularity of self-energy for dimerized V-atoms. The resulting transition from rutile to dimerized M$_1$ phase is adiabatically connected to Peierls-like transition, but is better characterized as the Mott transition in the presence of strong intersite exchange. As a consequence of Mott physics, the gap in the dimerized M$_1$ phase is temperature dependent. The sole increase of electronic temperature collapses the gap, reminiscent of recent experiments.

قيم البحث

اقرأ أيضاً

First-order phase transitions in solids are notoriously challenging to study. The combination of change in unit cell shape, long range of elastic distortion, and flow of latent heat leads to large energy barriers resulting in domain structure, hyster esis, and cracking. The situation is still worse near a triple point where more than two phases are involved. The famous metal-insulator transition (MIT) in vanadium dioxide, a popular candidate for ultrafast optical and electrical switching applications, is a case in point. Even though VO2 is one of the simplest strongly correlated materials, experimental difficulties posed by the first-order nature of the MIT as well as the involvement of at least two competing insulating phases have led to persistent controversy about its nature. Here, we show that studying single-crystal VO2 nanobeams in a purpose-built nanomechanical strain apparatus allows investigation of this prototypical phase transition with unprecedented control and precision. Our results include the striking finding that the triple point of the metallic and two insulating phases is at the transition temperature, T_tr = T_c, which we determine to be 65.0 +- 0.1 C. The findings have profound implications for the mechanism of the MIT in VO2, but in addition they demonstrate the importance of such an approach for mastering phase transitions in many other strongly correlated materials, such as manganites and iron-based superconductors.
Metal-insulator (MI) transitions in correlated electron systems have long been a central and controversial issue in material science. Vanadium dioxide (VO2) exhibits a first-order MI transition at 340 K. For more than half a century, it has been deba ted whether electronic correlation or the structural instability due to dimerised V ions is the more essential driving force behind this MI transition. Here, we show that an ultrahigh magnetic field of 500 T renders the insulator phase of tungsten (W)-doped VO2 metallic. The spin Zeeman effect on the d electrons of the V ions dissociates the dimers in the insulating phase, resulting in the delocalisation of electrons. Because the Mott-Hubbard gap essentially does not depend on the spin degree of freedom, the structural instability is likely to be the more essential driving force behind the MI transition.
We investigate the effect of charge self-consistency (CSC) in density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations compared to simpler one-shot calculations for materials where interaction effects lead to a strong redist ribution of electronic charges between different orbitals or between different sites. We focus on two systems close to a metal-insulator transition, for which the importance of CSC is currently not well understood. Specifically, we analyze the strain-related orbital polarization in the correlated metal CaVO$_3$ and the spontaneous electronic charge disproportionation in the rare-earth nickelate LuNiO$_3$. In both cases, we find that the CSC treatment reduces the charge redistribution compared to cheaper one-shot calculations. However, while the MIT in CaVO$_3$ is only slightly shifted due to the reduced orbital polarization, the effect of the site polarization on the MIT in LuNiO$_3$ is more subtle. Furthermore, we highlight the role of the double-counting correction in CSC calculations containing different inequivalent sites.
We present a detailed analysis of the critical behavior close to the Mott-Anderson transition. Our findings are based on a combination of numerical and analytical results obtained within the framework of Typical-Medium Theory (TMT-DMFT) - the simples t extension of dynamical mean field theory (DMFT) capable of incorporating Anderson localization effects. By making use of previous scaling studies of Anderson impurity models close to the metal-insulator transition, we solve this problem analytically and reveal the dependence of the critical behavior on the particle-hole symmetry. Our main result is that, for sufficiently strong disorder, the Mott-Anderson transition is characterized by a precisely defined two-fluid behavior, in which only a fraction of the electrons undergo a site selective Mott localization; the rest become Anderson-localized quasiparticles.
Soft x-ray spectroscopy is used to investigate the strain dependence of the metal-insulator transition of VO2. Changes in the strength of the V 3d - O 2p hybridization are observed across the transition, and are linked to the structural distortion. F urthermore, although the V-V dimerization is well-described by dynamical mean-field theory, the V-O hybridization is found to have an unexpectedly strong dependence on strain that is not predicted by band theory, emphasizing the relevance of the O ion to the physics of VO2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا