ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonclassical mechanical states in an optomechanical micromaser analogue

115   0   0.0 ( 0 )
 نشر من قبل Paul Nation
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. D. Nation




اسأل ChatGPT حول البحث

Here we show that quantum states of a mechanical oscillator can be generated in an optomechanical analogue of the micromaser, in absence of any atom-like subsystem, thus exhibiting single-atom masing effects in a system composed solely of oscillator components. In the regime where the single-photon coupling strength is on the order of the cavity decay rate, a cavity mode with at most a single-excitation present gives rise to sub-Poissonian oscillator limit-cycles that generate quantum features in the steady state just above the renormalized cavity resonance frequency and mechanical sidebands. The merger of multiple stable limit-cycles markedly reduces these nonclassical signatures. Varying the cavity-resonator coupling strength, corresponding to the micromaser pump parameter, reveals transitions for the oscillator phonon number that are the hallmark of a micromaser. The connection to the micromaser allows for a physical understanding of how nonclassical states arise in this system, and how best to maximize these signatures for experimental observation.



قيم البحث

اقرأ أيضاً

130 - Xun-Wei Xu , Hui Wang , Jing Zhang 2012
We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single- photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.
We study self-oscillations of an optomechanical system, where coherent mechanical oscillations are induced by a driven optical or microwave cavity, for the case of an anharmonic mechanical oscillator potential. A semiclassical analytical model is dev eloped to characterize the limit cycle for large mechanical amplitudes corresponding to a weak nonlinearity. As a result, we predict conditions to achieve subpoissonian phonon statistics in the steady state, indicating classically forbidden behavior. We compare with numerical simulations and find very good agreement. Our model is quite general and can be applied to other physical systems such as trapped ions or superconducting circuits.
71 - X. Z. Zhang , Lin Tian , 2018
We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We sho w that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultra-long delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems.
71 - Lars M. Johansen 2003
It is demonstrated that a weak measurement of the squared quadrature observable may yield negative values for coherent states. This result cannot be reproduced by a classical theory where quadratures are stochastic $c$-numbers. The real part of the w eak value is a conditional moment of the Margenau-Hill distribution. The nonclassicality of coherent states can be associated with negative values of the Margenau-Hill distribution. A more general type of weak measurement is considered, where the pointer can be in an arbitrary state, pure or mixed.
We demonstrate that a geometric phase, generated via a sequence of four optomechanical interactions, can be used to increase, or generate nonlinearities in the unitary evolution of a mechanical resonator. Interactions of this form lead to new mechani sms for preparing mechanical squeezed states, and preparation of non-classical states with significant Wigner negativity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا