ﻻ يوجد ملخص باللغة العربية
It is demonstrated that a weak measurement of the squared quadrature observable may yield negative values for coherent states. This result cannot be reproduced by a classical theory where quadratures are stochastic $c$-numbers. The real part of the weak value is a conditional moment of the Margenau-Hill distribution. The nonclassicality of coherent states can be associated with negative values of the Margenau-Hill distribution. A more general type of weak measurement is considered, where the pointer can be in an arbitrary state, pure or mixed.
In this paper we treat coherent-squeezed states of Fock space once more and study some basic properties of them from a geometrical point of view. Since the set of coherent-squeezed states ${ket{alpha, beta} | alpha, beta in fukuso}$ makes a real 4-
We make a comparative study of quadrature squeezing, photon-number distribution and Wigner function in a decayed quantum system. Specifically, for a field mode prepared initially in cat states interacting with a zero-temperature environment, we show
Complementarity theory is the essence of the Copenhagen interpretation. Since the Hanbury Brown and Twiss experiments, the particle nature of photons has been intensively studied for various quantum phenomena such as anticorrelation and Bell inequali
We theoretically generate nonclassical states from coherent state heralded by Knill-Laflamme-Milburn (KLM)-type SU(3) interference. Injecting a coherent state in signal mode and two single-photon sources in other two auxiliary modes of SU(3) interfer
We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single-