ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial results from a laboratory emulation of weak gravitational lensing measurements

133   0   0.0 ( 0 )
 نشر من قبل Charles Shapiro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak gravitational lensing observations are a key science driver for the NASA Wide Field Infrared Survey Telescope (WFIRST). To validate the performance of the WFIRST infrared detectors, we have performed a laboratory emulation of weak gravitational lensing measurements. Our experiments used a custom precision projector system to image a target mask composed of a grid of pinholes, emulating stellar point sources, onto a 1.7 micron cut-off Teledyne HgCdTe/H2RG detector. We used a 880nm LED illumination source and f/22 pupil stop to produce undersampled point spread functions similar to those expected from WFIRST. We also emulated the WFIRST image reconstruction strategy, using the IMage COMbination (IMCOM) algorithm to derive oversampled images from dithered, undersampled input images. We created shear maps for this data and computed shear correlation functions to mimic a real weak lensing analysis. After removing only 2nd order polynomial fits to the shear maps, we found that the correlation functions could be reduced to O(10^-6). This places a conservative upper limit on the detector-induced bias to the correlation function (under our test conditions). This bias is two orders of magnitude lower than the expected weak lensing signal. Restricted to scales relevant to dark energy analyses (sky separations > 0.5 arcmin), the bias is O(10^-7): comparable to the requirement for future weak lensing missions to avoid biasing cosmological parameter estimates. Our experiment will need to be upgraded and repeated under different configurations to fully characterize the shape measurement performance of WFIRST IR detectors.



قيم البحث

اقرأ أيضاً

386 - Rachel Mandelbaum 2015
We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understand ing how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements.
Summary of the long term data taking, related to one of the proposed next generation ground-based gravitational detectors location is presented here. Results of seismic and infrasound noise, electromagnetic attenuation and cosmic muon radiation measu rements are reported in the underground Matra Gravitational and Geophysical Laboratory near Gyongyosoroszi, Hungary. The collected seismic data of more than two years is evaluated from the point of view of the Einstein Telescope, a proposed third generation underground gravitational wave observatory. Applying our results for the site selection will significantly improve the signal to nose ratio of the multi-messenger astrophysics era, especially at the low frequency regime.
New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using Spherical Proportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from the first physics run taken at the Laboratoire Souterrain de Modane (LSM) with SEDINE, a 60 cm diameter prototype SPC operated with a mixture of $mathrm{Ne}+mathrm{CH}_{4}$ (0.7 %) at 3.1 bars for a total exposure of $9.7;mathrm{kgcdot days}$. New constraints are set on the spin-independent WIMP-nucleon scattering cross-section in the sub-$mathrm{GeV/c^2}$ mass region. We exclude cross-sections above $4.4 times mathrm{10^{-37};cm^2}$ at 90 % confidence level (C.L.) for a 0.5 $mathrm{GeV/c^2}$ WIMP. The competitive results obtained with SEDINE are promising for the next phase of the NEWS-G experiment: a 140 cm diameter SPC to be installed at SNOLAB by summer 2018.
Neutrinoless double-beta decay searches seek to determine the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The {sc Majorana} Collaboration is assembling an array of high purity Ge detecto rs to search for neutrinoless double-beta decay in $^{76}$Ge. The {sc Majorana Demonstrator} is composed of 44.8~kg (29.7 kg enriched in $^{76}$Ge) of Ge detectors in total, split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals of the {sc Demonstrator} are to establish the required background and scalability of a Ge-based, next-generation, tonne-scale experiment. Following a commissioning run that began in 2015, the first detector module started physics data production in early 2016. We will discuss initial results of the Module 1 commissioning and first physics run, as well as the status and potential physics reach of the full {sc Majorana Demonstrator} experiment. The collaboration plans to complete the assembly of the second detector module by mid-2016 to begin full data production with the entire array.
205 - W. Zhao , Q. Yue , K.J. Kang 2013
The China Dark matter Experiment collaboration reports the first experimental limit on WIMP dark matter from 14.6 kg-day of data taken with a 994 g p-type point-contact germanium detector at the China Jinping underground Laboratory where the rock ove rburden is more than 2400 m. The energy threshold achieved was 400 eVee. According to the 14.6 kg-day live data, we placed the limit of N= 1.75 * 10^{-40} cm^{2} at 90% confidence level on the spin-independent cross-section at WIMP mass of 7 GeV before differentiating bulk signals from the surface backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا