ﻻ يوجد ملخص باللغة العربية
We calculate the one-loop corrections from inflationary gravitons to the electromagnetic fields of a point charge and a point magnetic dipole on a locally de Sitter space background. Results are obtained both for an observer at rest in co-moving coordinates, whose physical distance from the sources increases with the expanding universe, and for an observer at rest in static coordinates, whose physical distance from the sources is constant. The fields of both sources show the de Sitter analogs of the fractional $G/r^2$ corrections which occur in flat space, but there are also some fractional $G H^2$ corrections due to the scattering of virtual photons from the vast ensemble of infrared gravitons produced by inflation. The co-moving observer perceives the magnitude of the point charge to increase linearly with co-moving time and logarithmically with the co-moving position, however, the magnetic dipole shows only a negative logarithmic spatial variation. The static observer perceives no secular change of the point charge but he does report a secular enhancement of the magnetic dipole moment.
We include the single graviton loop contribution to the linearized Einstein equation. Explicit results are obtained for one loop corrections to the propagation of gravitational radiation. Although suppressed by a minuscule loop-counting parameter, th
We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of $e$-folds before the end of inflation. Using the relation between the observables like $n_s$ a
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potent
We show that the ghost degrees of freedom of Einstein gravity with a Weyl term can be eliminated by a simple mechanism that invokes local Lorentz symmetry breaking. We demonstrate how the mechanism works in a cosmological setting. The presence of the
The BICEP2 collaboration has recently released data showing that the scalar-to-tensor ratio $r$ is much larger than expected. The immediate consequence, in the context of $f(R)$ gravity, is that the Starobinsky model of inflation is ruled out since i