ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Sources Embedded in the Dense Core B59, the Mouthpiece of the Pipe Nebula

87   0   0.0 ( 0 )
 نشر من قبل Anabella Araudo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Very Large Array continuum observations made at 8.3 GHz toward the dense core B59, in the Pipe Nebula. We detect six compact sources, of which five are associated with the five most luminous sources at 70 micrometer in the region, while the remaining one is probably a background source. We propose that the radio emission is free-free from the ionized outflows present in these protostars. We discuss the kinematical impact of these winds in the cloud. We also propose that these winds are optically thick in the radio but optically thin in the X-rays and that this characteristic can explain why X-rays from the magnetosphere are detected in three of them, while the radio emission is most probably dominated by the free-free emission from the external layers of the wind.

قيم البحث

اقرأ أيضاً

The detailed magnetic field structure of the starless dense core CB81 (L1774, Pipe 42) in the Pipe Nebula was determined based on near-infrared polarimetric observations of background stars to measure dichroically polarized light produced by magnetic ally aligned dust grains in the core. The magnetic fields pervading CB81 were mapped using 147 stars and axisymmetrically distorted hourglass-like fields were identified. On the basis of simple 2D and 3D magnetic field modeling, the magnetic inclination angles in the plane-of-sky and line-of-sight directions were determined to be $4^{circ} pm 8^{circ}$ and $20^{circ} pm 20^{circ}$, respectively. The total magnetic field strength of CB81 was found to be $7.2 pm 2.3$ $mu{rm G}$. Taking into account the effects of thermal/turbulent pressure and magnetic fields, the critical mass of CB81 was calculated to be $M_{rm cr}=4.03 pm 0.40$ M$_{odot}$, which is close to the observed core mass of $M_{rm core}=3.37 pm 0.51$ M$_{odot}$. We thus conclude that CB81 is in a condition close to the critical state. In addition, a spatial offset of $92$ was found between the center of magnetic field geometry and the dust extinction distribution; this offset structure could not have been produced by self-gravity. The data also indicate a linear relationship between polarization and extinction up to $A_V sim 30$ mag going toward the core center. This result confirms that near-infrared polarization can accurately trace the overall magnetic field structure of the core.
We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30h single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 GHz an d 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 muJy/bm, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The new data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than +/-0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.
(abridged) Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, us ing the Planck-derived dust opacity spectral index beta, derived on scales of 30 (or ~1 pc). We use this model to make predictions of the submillimeter flux density at 850 micron, and we compare these in turn with APEX-Laboca observations. Results: A comparison of the submillimeter dust optical depth and near-infrared extinction data reveals evidence for an increased submillimeter dust opacity at high column densities, interpreted as an indication of grain growth in the inner parts of the core. Additionally, a comparison of the Herschel dust model and the Laboca data reveals that the frequency dependence of the submillimeter opacity, described by the spectral index beta, does not change. A single beta that is only slightly different from the Planck-derived value is sufficient to describe the data, beta=1.53+/-0.07. We apply a similar analysis to Barnard 68, a core with significantly lower column densities than FeSt 1-457, and we do not find evidence for grain growth but also a single beta. Conclusions: While we find evidence for grain growth from the dust opacity in FeSt 1-457, we find no evidence for significant variations in the dust opacity spectral index beta on scales 0.02<x<1 pc (or 36<x<30). The correction to the Planck-derived dust beta that we find in both cases is on the order of the measurement error, not including any systematic errors, and it would thus be reasonable to directly apply the dust beta from the Planck all-sky dust model. As a corollary, reliable effective temperature maps can be derived which would be otherwise affected by beta variations.
(abridged) [...] Methods: In a continued study of the molecular core population of the Pipe Nebula, we present a molecular-line survey of 52 cores. Previous research has shown a variety of different chemical evolutionary stages among the cores. Using the Mopra radio telescope, we observed the ground rotational transitions of HCO+, H13CO+, HCN, H13CN, HNC, and N2H+. These data are complemented with near-infrared extinction maps to constrain the column densities, effective dust temperatures derived from Herschel data, and NH3-based gas kinetic temperatures. Results: The target cores are located across the nebula, span visual extinctions between 5 and 67 mag, and effective dust temperatures (averaged along the lines of sight) between 13 and 19 K. The extinction-normalized integrated line intensities, a proxy for the abundance in constant excitation conditions of optically thin lines, vary within an order of magnitude for a given molecule. The effective dust temperatures and gas kinetic temperatures are correlated, but the effective dust temperatures are consistently higher than the gas kinetic temperatures. Combining the molecular line and temperature data, we find that N2H+ is only detected toward the coldest and densest cores while other lines show no correlation with these core properties. Conclusions: Within this large sample, N2H+ is the only species to exclusively trace the coldest and densest cores, in agreement with chemical considerations. In contrast, the common high-density tracers HCN and HNC are present in a majority of cores, demonstrating the utility of these molecules to characterize cores over a large range of extinctions. The correlation between the effective dust temperatures and the gas kinetic temperatures suggests that the former are dominated by dust that is both dense and thermodynamically coupled to the dense gas traced by NH3. [...]
We have used moderate resolution, near-infrared spectra from the SpeX spectrograph on the NASA Infrared Telescope facility to characterize the stellar content of Barnard 59 (B59), the most active star-forming core in the Pipe Nebula. Measuring lumino sity and temperature sensitive features in the spectra of 20 candidate YSOs, we identified likely background giant stars and measured each stars spectral type, extinction, and NIR continuum excess. We find that B59 is composed of late type (K4-M6) low-mass (0.9--0.1 M_sun) YSOs whose median stellar age is comparable to, if not slightly older than, that of YSOs within the Rho Oph, Taurus, and Chameleon star forming regions. Deriving absolute age estimates from pre-main sequence models computed by DAntona et al., and accounting only for statistical uncertainties, we measure B59s median stellar age to be 2.6+/-0.8 Myrs. Including potential systematic effects increases the error budget for B59s median (DM98) stellar age to 2.6+4.1/-2.6 Myrs. We also find that the relative age orderings implied by pre-main sequence evolutionary tracks depend on the range of stellar masses sampled, as model isochrones possess significantly different mass dependencies. The maximum likelihood median stellar age we measure for B59, and the regions observed gas properties, suggest that the B59 dense core has been stable against global collapse for roughly 6 dynamical timescales, and is actively forming stars with a star formation efficiency per dynamical time of ~6%. This maximum likelihood value agrees well with recent star formation simulations that incorporate various forms of support against collapse, such as sub-critical magnetic fields, outflows, and radiative feedback from protostellar heating. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا