ترغب بنشر مسار تعليمي؟ اضغط هنا

The 9 and 18 Micron Luminosity Function of Various Types of Galaxies with AKARI: Implication for the Dust Torus Structure of AGN

33   0   0.0 ( 0 )
 نشر من قبل Yoshiki Toba
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the 9 and 18 micron luminosity functions (LFs) of galaxies at 0.006 < z < 0.8 (with an average redshift of ~ 0.04) using the AKARI mid-infrared all-sky survey catalog. We selected 243 galaxies at 9 micron and 255 galaxies at 18 micron from the Sloan Digital Sky Survey (SDSS) spectroscopy region. These galaxies were then classified by their optical emission lines, such as the line width of H_alpha or by their emission line ratios of [OIII]/H_beta and [NII]/H_alpha into five types: Type 1 active galactic nuclei (AGN) (Type 1); Type 2 AGN (Type 2); low-ionization narrow emission line galaxies (LINER); galaxies with both star formation and narrow-line AGN activity (composite galaxies); and star-forming galaxies (SF). We found that (i) the number density ratio of Type 2 to Type 1 AGNs is 1.73 +/- 0.36, which is larger than a result obtained from the optical LF and (ii) this ratio decreases with increasing 18 micron luminosity.

قيم البحث

اقرأ أيضاً

78 - Tomotsugu Goto 2010
Infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. The AKARI IR space telescope performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160um) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can much more precisely measure the total infrared luminosity (L_TIR) of individual galaxies, and thus, the total infrared luminosity density in the local Universe. By fitting IR SED models, we have re-measured L_TIR of the IRAS Revised Bright Galaxy Sample. We present mid-IR monochromatic luminosity to L_TIR
Context. Little is known about the properties of the warm (Tdust >~ 150 K) debris disk material located close to the central star, which has a more direct link to the formation of terrestrial planets than the low temperature debris dust that has been detected to date. Aims. To discover new warm debris disk candidates that show large 18 micron excess and estimate the fraction of stars with excess based on the AKARI/IRC Mid-Infrared All-Sky Survey data. Methods. We have searched for point sources detected in the AKARI/IRC All-Sky Survey, which show a positional match with A-M dwarf stars in the Tycho-2 Spectral Type Catalogue and exhibit excess emission at 18 micron compared to that expected from the Ks magnitude in the 2MASS catalogue. Results. We find 24 warm debris candidates including 8 new candidates among A-K stars. The apparent debris disk frequency is estimated to be 2.8 +/- 0.6%. We also find that A stars and solar-type FGK stars have different characteristics of the inner component of the identified debris disk candidates --- while debris disks around A stars are cooler and consistent with steady-state evolutionary model of debris disks, those around FGK stars tend to be warmer and cannot be explained by the steady-state model.
62 - V. Buat , N. Oi , D. Burgarella 2017
We built a 8um selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15<z<0.49, 0.75<z<1.34, 1.34<z<1.7 and 1.7<z<2.05) . Our sample contains 4079 sources, 599 are sec urely detected with Herschel/PACS. Also adding ultraviolet (UV) data from GALEX, we fit the spectral energy distributions using the physically motivated code CIGALE to extract the star formation rate, stellar mass, dust attenuation and the AGN contribution to the total infrared luminosity (L_{IR}). We discuss the impact of the adopted attenuation curve and that of the wavelength coverage to estimate these physical parameters. We focus on galaxies with a luminosity close the characteristic L_{IR}^* in the different redshift bins to study the evolution with redshift of the dust attenuation in these galaxies.
71 - Tomotsugu Goto 2011
By cross-correlating AKARI infrared (IR) sources with the SDSS galaxies, we identified 2357 infrared galaxies with a spectroscopic redshift. This is not just one of the largest samples of local IR galaxies, but AKARI provides crucial FIR bands (9, 18 , 65, 90, 140, and 160um) in accurately measuring galaxy SED across the peak of the dust emission at ~100um. By fitting modern IR SED models to the AKARI photometry, we measured the total infrared luminosity (L_IR) of individual galaxies more accurately. Using this L_IR, we constructed luminosity functions of infrared galaxies at a median redshift of z=0.031, with 4 times larger sample than previous work. The LF agrees well with that at z=0.0082 (RBGS), showing smooth and continuous evolution toward higher redshift LFs measured in the AKARI NEP deep field. The derived local cosmic IR luminosity density is Omega_IR=3.8x10^8 LsunMpc^-3. We separate galaxies into AGN, star-forming, and composite by using the [NII]/Ha vs [OIII]/Hb line ratios. The fraction of AGN shows a continuous increase with increasing L_IR from 25% to 90% at 9<log L_IR<12.5. The SFR_Ha and L_[OIII] show good correlations with L_IR for SFG (star-forming galaxies) and AGN, respectively. The self-absorption corrected Ha/Hb ratio shows a weak increase with L_IR with a substantial scatter. When we separate IR LFs into contributions from AGN and SFG, the AGN contribution becomes dominant at L_IR>10^11Lsun, coinciding the break of the both SFG and AGN IR LFs. At L_IR<10^11Lsun, SFG dominates IR Lfs. Only 1.1% of Omega_IR is produced by LIRG, and only 0.03% is by ULIRG in the local Universe. This work also provides the most accurate infrared luminosity density of the local Universe to date. Compared with high redshift results from the AKARI NEP deep survey, we observed a strong evolution of Omega_IR^SFG ~(1+z)^4.1+-0.4 and Omega_IR^AGN ~(1+z)^4.1+-0.5 (abridged).
89 - J. Aird , K. Nandra , E. S. Laird 2009
We present new observational determinations of the evolution of the 2-10keV X-ray luminosity function (XLF) of AGN. We utilise data from a number of surveys including both the 2Ms Chandra Deep Fields and the AEGIS-X 200ks survey, enabling accurate me asurements of the evolution of the faint end of the XLF. We combine direct, hard X-ray selection and spectroscopic follow-up or photometric redshift estimates at z<1.2 with a rest-frame UV colour pre-selection approach at higher redshifts to avoid biases associated with catastrophic failure of the photometric redshifts. Only robust optical counterparts to X-ray sources are considered using a likelihood ratio matching technique. A Bayesian methodology is developed that considers redshift probability distributions, incorporates selection functions for our high redshift samples, and allows robust comparison of different evolutionary models. We find that the XLF retains the same shape at all redshifts, but undergoes strong luminosity evolution out to z~1, and an overall negative density evolution with increasing redshift, which thus dominates the evolution at earlier times. We do not find evidence that a Luminosity-Dependent Density Evolution, and the associated flattening of the faint-end slope, is required to describe the evolution of the XLF. We find significantly higher space densities of low-luminosity, high-redshift AGN than in prior studies, and a smaller shift in the peak of the number density to lower redshifts with decreasing luminosity. The total luminosity density of AGN peaks at z=1.2+/-0.1, but there is a mild decline to higher redshifts. We find >50% of black hole growth takes place at z>1, with around half in Lx<10^44 erg/s AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا