ترغب بنشر مسار تعليمي؟ اضغط هنا

AKARI/IRC 18 Micron Survey of Warm Debris Disks

82   0   0.0 ( 0 )
 نشر من قبل Hideaki Fujiwara
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Little is known about the properties of the warm (Tdust >~ 150 K) debris disk material located close to the central star, which has a more direct link to the formation of terrestrial planets than the low temperature debris dust that has been detected to date. Aims. To discover new warm debris disk candidates that show large 18 micron excess and estimate the fraction of stars with excess based on the AKARI/IRC Mid-Infrared All-Sky Survey data. Methods. We have searched for point sources detected in the AKARI/IRC All-Sky Survey, which show a positional match with A-M dwarf stars in the Tycho-2 Spectral Type Catalogue and exhibit excess emission at 18 micron compared to that expected from the Ks magnitude in the 2MASS catalogue. Results. We find 24 warm debris candidates including 8 new candidates among A-K stars. The apparent debris disk frequency is estimated to be 2.8 +/- 0.6%. We also find that A stars and solar-type FGK stars have different characteristics of the inner component of the identified debris disk candidates --- while debris disks around A stars are cooler and consistent with steady-state evolutionary model of debris disks, those around FGK stars tend to be warmer and cannot be explained by the steady-state model.

قيم البحث

اقرأ أيضاً

Extreme debris disks (EDDs) are rare systems with peculiarly large amounts of warm dust that may stem from recent giant impacts between planetary embryos during the final phases of terrestrial planet growth. Here we report on the identification and c haracterization of six new EDDs. These disks surround F5-G9 type main-sequence stars with ages >100 Myr, have dust temperatures higher than 300K and fractional luminosities between 0.01 and 0.07. Using time-domain photometric data at 3.4 and 4.6$mu$m from the WISE all sky surveys, we conclude that four of these disks exhibited variable mid-infrared emission between 2010 and 2019. Analyzing the sample of all known EDDs, now expanded to 17 objects, we find that 14 of them showed changes at 3-5$mu$m over the past decade suggesting that mid-infrared variability is an inherent characteristic of EDDs. We also report that wide-orbit pairs are significantly more common in EDD systems than in the normal stellar population. While current models of rocky planet formation predict that the majority of giant collisions occur in the first 100 Myr, we find that the sample of EDDs is dominated by systems older than this age. This raises the possibility that the era of giant impacts may be longer than we think, or that some other mechanism(s) can also produce EDDs. We examine a scenario where the observed warm dust stems from the disruption and/or collisions of comets delivered from an outer reservoir into the inner regions, and explore what role the wide companions could play in this process.
We present ATCA continuum observations at a wavelength of 6.8 mm of five debris disks: $beta$ Pictoris, q$^1$ Eridani, HD 107146, HD 181327, and HD 95086. These observations provide the detection at the longest wavelengths obtained to date for all th ese debris disks. By combining our 6.8 mm data with previous detections at shorter sub-millimeter/millimeter wavelengths we measure the long wavelength spectral index of these sources. We then use previous estimates for the temperature of the emitting dust to derive the spectral index of the dust emissivity. Under the assumption that all the detected flux comes from dust only, we constrain the slope of the solid size distribution, assumed to be a power-law. The values that we infer for the slope of the size distribution range between about 3.36 and 3.50. We compare our findings with the case of the Fomalhaut debris disk and use these results to test the predictions of collisional cascades of planetesimal belts.
Context: Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 AU. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods : We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 micron detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks<4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H, and Ks band fluxes, applying neutral density (ND) filters for Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS) on IRSF, the phi 1.4 m near-IR telescope in South Africa, and improved the flux accuracy from 14% to 1.8% on average. Results: We identified 53 debris-disk candidates including eight new detections from our sample of 678 main-sequence stars. The detection rate of debris disks for this work is ~8%, which is comparable with those in previous works by Spitzer and Herschel. Conclusion: The importance of this study is the detection of faint warm debris disks around nearby field stars. At least nine objects have a large amount of dust for their ages, which cannot be explained by the conventional steady-state collisional cascade model.
We present the results of an unbiased asteroid survey in the mid-infrared wavelength with the Infrared Camera (IRC) onboard the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of the lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these residual events. We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a brand-new catalog of asteroids, named the Asteroid Catalog Using Akari (AcuA), which contains 5,120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4,953 main belt asteroids, 58 near Earth asteroids, and 109 Jovian Trojan asteroids. The catalog will be publicly available via the Internet.
Knowledge of water in the solar system is important for understanding of a wide range of evolutionary processes and the thermal history of the solar system. To explore the existence of water in the solar system, it is indispensable to investigate hyd rated minerals and/or water ice on asteroids. These water-related materials show absorption features in the 3-$micron$ band (wavelengths from 2.7 to 3.1 $micron$). We conducted a spectroscopic survey of asteroids in the 3-$micron$ band using the Infrared Camera (IRC) on board the Japanese infrared satellite AKARI. In the warm mission period of AKARI, 147 pointed observations were performed for 66 asteroids in the grism mode for wavelengths from 2.5 to 5 $micron$. According to these observations, most C-complex asteroids have clear absorption features ($> 10%$ with respect to the continuum) related to hydrated minerals at a peak wavelength of approximately 2.75 $micron$, while S-complex asteroids have no significant feature in this wavelength range. The present data are released to the public as the Asteroid Catalog using AKARI Spectroscopic Observations (AcuA-spec).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا