ﻻ يوجد ملخص باللغة العربية
WASP-19b is one of the most irradiated hot-Jupiters known. Its secondary eclipse is the deepest of all transiting planets, and has been measured in multiple optical and infrared bands. We obtained a z band eclipse observation, with measured depth of 0.080 +/- 0.029 %, using the 2m Faulkes Telescope South, that is consistent with the results of previous observations. We combine our measurement of the z band eclipse with previous observations to explore atmosphere models of WASP-19b that are consistent with the its broadband spectrum. We use the VSTAR radiative transfer code to examine the effect of varying pressure-temperature profiles and C/O abundance ratios on the emission spectrum of the planet. We find models with super-solar carbon enrichment best match the observations, consistent with previous model retrieval studies. We also include upper atmosphere haze as another dimension in the interpretation of exoplanet emission spectra, and find that particles <0.5 micron in size are unlikely to be present in WASP-19b.
We present an occultation of the newly discovered hot Jupiter system WASP-19, observed with the HAWK-I instrument on the VLT, in order to measure thermal emission from the planets dayside at ~2 um. The light curve was analysed using a Markov-Chain Mo
We present the first ground-based detection of thermal emission from an exoplanet in the H-band. Using HAWK-I on the VLT, we observed an occultation of WASP-19b by its G8V-type host star. WASP-19b is a Jupiter-mass planet with an orbital period of on
We report the detection of thermal emission from the hot Jupiter WASP-3b in the KS band, using a newly developed guiding scheme for the WIRC instrument at the Palomar Hale 200in telescope. Our new guiding scheme has improved the telescope guiding pre
The short period ($0.94$-day) transiting exoplanet WASP-19b is an exceptional target for transmission spectroscopy studies, due to its relatively large atmospheric scale-height ($sim 500$ km) and equilibrium temperature ($sim 2100$ K). Here we report
We report the detection of the eclipse of the very-hot Jupiter WASP-12b via z-band time-series photometry obtained with the 3.5-meter ARC telescope at Apache Point Observatory. We measure a decrease in flux of 0.082+/-0.015% during the passage of the