ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray observations of the microquasars Cygnus X-1, Cygnus X-3, GRS 1915+105, and GX 339-4 with the Fermi Large Area Telescope

134   0   0.0 ( 0 )
 نشر من قبل Arash Bodaghee
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Arash Bodaghee




اسأل ChatGPT حول البحث

Detecting gamma-rays from microquasars is a challenging but worthwhile endeavor for understanding particle acceleration, the jet mechanism, and for constraining leptonic/hadronic emission models. We present results from a likelihood analysis on timescales of 1 d and 10 d of ~4 years worth of gamma-ray observations (0.1-10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339-4. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE, plus 5 new days on which Cyg X-3 is detected at a significance of ~5-sigma that are not reported in the literature. In addition, Cyg X-3 is significantly detected on 10-d timescales outside of known gamma-ray flaring epochs which suggests that persistent gamma-ray emission from Cyg X-3 has been detected for the first time. For Cyg X-1, we find three low significance excesses (~3-4-sigma) on daily timescales that are contemporaneous with gamma-ray flares reported (also at low significance) by AGILE. Two other microquasars, GRS 1915+105 and GX 339-4, are not detected and we derive 3-sigma upper limits of 2.3e-8 ph/cm2/s and 1.6e-8 ph/cm2/s, respectively, on the persistent flux in the 0.1-10 GeV range. These results enable us to define a list of the general conditions that are necessary for the detection of gamma-rays from microquasars.



قيم البحث

اقرأ أيضاً

Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deep ly studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.
We improve the method proposed by Yao emph{et al} (2003) to resolve the X-ray dust scattering halos of point sources. Using this method we re-analyze the Cygnus X-1 data observed with {it Chandra} (ObsID 1511) and derive the halo radial profile in di fferent energy bands and the fractional halo intensity (FHI) as $I(E)=0.402times E_{{rm keV}}^{-2}$. We also apply the method to the Cygnus X-3 data ({it Chandra} ObsID 425) and derive the halo radial profile from the first order data with the {it Chandra} ACIS+HETG. It is found that the halo radial profile could be fit by the halo model MRN (Mathis, Rumpl $&$ Nordsieck, 1977) and WD01 (Weingartner $&$ Draine, 2001); the dust clouds should be located at between 1/2 to 1 of the distance to Cygnus X-1 and between 1/6 to 3/4 (from MRN model) or 1/6 to 2/3 (from WD01 model) of the distance to Cygnus X-3, respectively.
The Galactic black hole transient GRS1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multi-wavelength flares. Here we report the radio and X-ray properties of GRS1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (~3mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterised by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.
We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS i s most sensitive to gamma rays at energies between 85 GeV to 30 TeV. The effective exposure time amounts to a total of about 44 hours, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.
We report on the X-ray spectral behavior within the steady states of GRS 1915+105. Our work is based on the full data set on the source obtained using the Proportional Counter Array on the Rossi X-ray Timing Explorer and 15 GHz radio data obtained us ing the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to them as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the coronal component in both the soft and hard data within the {it RXTE}/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius (R_in), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes eta~0.68 +/- 0.35 and eta ~ 1.12 +/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of model parameters to the state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while a large portion of the steady-hard observations match the hard state criteria when the disk fraction constraint is neglected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا