ترغب بنشر مسار تعليمي؟ اضغط هنا

The galaxy-wide IMF - from star clusters to galaxies

216   0   0.0 ( 0 )
 نشر من قبل Carsten Weidner
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha_2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha_1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies. In this contribution the IGIMF theory is described, and the accompanying contribution by Pflamm-Altenburg, Weidner & Kroupa (this volume) documents the applications of the IGIMF theory to galactic astrophysics.



قيم البحث

اقرأ أيضاً

Recent evidence based independently on spectral line strengths and dynamical modelling point towards a non-universal stellar Initial Mass Function (IMF), probably implying an excess of low-mass stars in elliptical galaxies with a high velocity disper sion. Here we show that a time-independent bottom-heavy IMF is compatible neither with the observed metal-rich populations found in giant ellipticals nor with the number of stellar remnants observed within these systems. We suggest a two-stage formation scenario involving a time-dependent IMF to reconcile these observational constraints. In this model, an early strong star-bursting stage with a top-heavy IMF is followed by a more prolonged stage with a bottom-heavy IMF. Such model is physically motivated by the fact that a sustained high star formation will bring the interstellar medium to a state of pressure, temperature and turbulence that can drastically alter the fragmentation of the gaseous component into small clumps, promoting the formation of low-mass stars. This toy model is in good agreement with the different observational constrains on massive elliptical galaxies, such as age, metallicity, alpha-enhancement, M/L, or the mass fraction of the stellar component in low-mass stars.
189 - Carsten Weidner 2013
Observational studies are showing that the galaxy-wide stellar initial mass function are top-heavy in galaxies with high star-formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR o f a galaxy, it follows that galaxies which have or which formed with SFRs > 10 Msol yr^-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher M/L ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar initial mass function (IMF). For the Milky Way, the IGIMF yields very good agreement with the disk- and the bulge-IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a pc and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index beta of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.
377 - Sami Dib 2011
We explore how the star formation efficiency in a protocluster clump is regulated by metallicity dependent stellar winds from the newly formed massive OB stars (Mstar >5 Msol). The model describes the co-evolution of the mass function of gravitationa lly bound cores and of the IMF in a protocluster clump. Dense cores are generated uniformly in time at different locations in the clump, and contract over lifetimes that are a few times their free fall times. The cores collapse to form stars that power strong stellar winds whose cumulative kinetic energy evacuates the gas from the clump and quenches further core and star formation. This sets the final star formation efficiency, SFEf. Models are run with various metallicities in the range Z/Zsol=[0.1,2]. We find that the SFEf decreases strongly with increasing metallicity.The SFEf-metallicity relation is well described by a decaying exponential whose exact parameters depend weakly on the value of the core formation efficiency. We find that there is almost no dependence of the SFEf-metallicity relation on the clump mass. This is due to the fact that an increase (decrease) in the clump mass leads to an increase (decrease) in the feedback from OB stars which is opposed by an increase (decrease) in the gravitational potential of the clump. The clump mass-cluster mass relations we find for all of the different metallicity cases imply a negligible difference between the exponent of the mass function of the protocluster clumps and that of the young clusters mass function. By normalizing the SFEs to their value for the solar metallicity case, we compare our results to SFE-metallicity relations derived on galactic scales and find a good agreement. As a by-product of this study, we also provide ready-to-use prescriptions for the power of stellar winds of main sequence OB stars in the mass range [5,80] Msol in the metallicity range we have considered
104 - G. Ashworth 2017
We present the implementation of a Bayesian formalism within the Stochastically Lighting Up Galaxies (SLUG) stellar population synthesis code, which is designed to investigate variations in the initial mass function (IMF) of star clusters. By compari ng observed cluster photometry to large libraries of clusters simulated with a continuously varying IMF, our formalism yields the posterior probability distribution function (PDF) of the cluster mass, age, and extinction, jointly with the parameters describing the IMF. We apply this formalism to a sample of star clusters from the nearby galaxy NGC 628, for which broad-band photometry in five filters is available as part of the Legacy ExtraGalactic UV Survey (LEGUS). After allowing the upper-end slope of the IMF ($alpha_3$) to vary, we recover PDFs for the mass, age, and extinction that are broadly consistent with what is found when assuming an invariant Kroupa IMF. However, the posterior PDF for $alpha_3$ is very broad due to a strong degeneracy with the cluster mass, and it is found to be sensitive to the choice of priors, particularly on the cluster mass. We find only a modest improvement in the constraining power of $alpha_3$ when adding H$alpha$ photometry from the companion H$alpha$-LEGUS survey. Conversely, H$alpha$ photometry significantly improves the age determination, reducing the frequency of multi-modal PDFs. With the aid of mock clusters we quantify the degeneracy between physical parameters, showing how constraints on the cluster mass that are independent of photometry can be used to pin down the IMF properties of star clusters.
172 - Matthew C. Smith 2020
Galaxy formation simulations frequently use Initial Mass Function (IMF) averaged feedback prescriptions, where star particles are assumed to represent single stellar populations that fully sample the IMF. This approximation breaks down at high mass r esolution, where stochastic variations in stellar populations become important. We discuss various schemes to populate star particles with stellar masses explicitly sampled from the IMF. We use Monte Carlo numerical experiments to examine the ability of the schemes to reproduce an input IMF in an unbiased manner while conserving mass. We present our preferred scheme which can easily be added to pre-existing star formation prescriptions. We then carry out a series of high resolution isolated simulations of dwarf galaxies with supernovae, photoionization and photoelectric heating to compare the differences between using IMF averaged feedback and explicitly sampling the IMF. We find that if supernovae are the only form of feedback, triggering individual supernovae from IMF averaged rates gives identical results to IMF sampling. However, we find that photoionization is more effective at regulating star formation when IMF averaged rates are used, creating more, smaller H II regions than the rare, bright sources produced by IMF sampling. We note that the increased efficiency of the IMF averaged feedback versus IMF sampling is not necessarily a general trend and may be reversed depending on feedback channel, resolution and other details. However, IMF sampling is always the more physically motivated approach. We conservatively suggest that it should be used for star particles less massive than $sim500,mathrm{M_odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا