ﻻ يوجد ملخص باللغة العربية
We present many-body textit{ab initio} calculations of the electronic and optical properties of semiconducting zigzag carbon nanotubes under uniaxial strain. The GW approach is utilized to obtain the quasiparticle bandgaps and is combined with the Bethe-Salpeter equation to obtain the optical absorption spectrum. We find that the dependence of the electronic bandgaps on strain is more complex than previously predicted based on tight-binding models or density-functional theory. In addition, we show that the exciton energy and exciton binding energy depend significantly on strain, with variations of tens of meVs per percent strain, but that despite these strong changes the absorbance is found to be nearly independent of strain. Our results provide new guidance for the understanding and design of optomechanical systems based on carbon nanotubes.
Doping is one of the most common strategies for improving the photocatalytic and solar energy conversion properties of TiO$_2$, hence an accurate theoretical description of the electronic and optical properties of doped TiO$_2$ is of both scientific
The family of graphynes, novel two-dimensional semiconductors with various and fascinating chemical and physical properties, has attracted great interest from both science and industry. Currently, the focus of graphynes is on graphdiyne, or graphyne-
In carbon nanotubes, the most abundant defects, caused for example by irradiation or chemisorption treatments, are small perturbing clusters, i.e. bi-site defects, extending over both A and B sites. The relative positions of these perturbing clusters
The electronic Raman scattering (ERS) features of single-walled carbon nanotubes (SWNTs) can reveal a wealth of information about their electronic structures, but have previously been thought to appear exclusively in metallic (M-) but not in semicond
We study the effect of quantum vibronic coupling on the electronic properties of carbon allotropes, including molecules and solids, by combining path integral first principles molecular dynamics (FPMD) with a colored noise thermostat. In addition to