ﻻ يوجد ملخص باللغة العربية
Using large-scale determinant quantum Monte Carlo simulations in combination with the stochastic analytical continuation, we study two-particle dynamical correlation functions in the anisotropic square lattice of weakly coupled one-dimensional (1D) Hubbard chains at half-filling and in the presence of weak frustration. The evolution of the static spin structure factor upon increasing the interchain coupling is suggestive of the transition from the power-law decay of spin-spin correlations in the 1D limit to long-range antiferromagnetic order in the quasi-1D regime and at $T=0$. In the numerically accessible regime of interchain couplings, the charge sector remains gapped. The low-energy momentum dependence of the spin excitations is well described by the linear spin-wave theory with the largest intensity located around the antiferromagnetic wave vector. This magnon mode corresponds to a bound state of two spinons. At higher energies the spinons deconfine and we observe signatures of the two-spinon continuum which progressively fade away as a function of interchain hopping.
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as w
Using a non-perturbative functional renormalization group approach involving both fermionic and bosonic fields we calculate the interaction-induced change of the Fermi surface of spinless fermions moving on two chains connected by weak interchain hop
We explain how spinons and magnons naturally arise in $mathrm{SU}(2)$ invariant spin chains when describing ground states and elementary excitations using MPS. Within this description, spinons can emerge in a spin-1 chain at a first-order transition
Magnetic excitations in a weakly coupled spin dimers and chains compound Cu2Fe2Ge4O13 are measured by inelastic neutron scattering. Both structure factors and dispersion of low energy excitations up to 10 meV energy transfer are well described by a s
We study the ground-state properties of the double-chain Hubbard model coupled with ferromagnetic exchange interaction by using the weak-coupling theory, density-matrix renormalization group technique, and Lanczos exact-diagonalization method. We det