ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in a model of two Hubbard chains coupled with ferromagnetic exchange interaction

323   0   0.0 ( 0 )
 نشر من قبل Yukinori Ohta
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the ground-state properties of the double-chain Hubbard model coupled with ferromagnetic exchange interaction by using the weak-coupling theory, density-matrix renormalization group technique, and Lanczos exact-diagonalization method. We determine the ground-state phase diagram in the parameter space of the ferromagnetic exchange interaction and band filling. We find that, in high electron density regime, the spin gap opens and the spin-singlet $d_{xy}$-wave-like pairing correlation is most dominant, whereas in low electron density regime, the fully-polarized ferromagnetic state is stabilized where the spin-triplet $p_{y}$-wave-like pairing correlation is most dominant.



قيم البحث

اقرأ أيضاً

We introduce a variational state for one-dimensional two-orbital Hubbard models that intuitively explains the recent computational discovery of pairing in these systems when hole doped. Our Ansatz is an optimized linear superposition of Affleck-Kenne dy-Lieb-Tasaki valence bond states, rendering the combination a valence bond liquid dubbed Orbital Resonant Valence Bond. We show that the undoped (one electron/orbital) quantum state of two sites coupled into a global spin singlet is exactly written employing only spin-1/2 singlets linking orbitals at nearest-neighbor sites. Generalizing to longer chains defines our variational state visualized geometrically expressing our chain as a two-leg ladder, with one orbital per leg. As in Andersons resonating valence-bond state, our undoped variational state contains preformed singlet pairs that via doping become mobile leading to superconductivity. Doped real materials with one-dimensional substructures, two near-degenerate orbitals, and intermediate Hubbard U/W strengths -- W the carriers bandwidth -- could realize spin-singlet pairing if on-site anisotropies are small. If these anisotropies are robust, spin-triplet pairing emerges.
98 - Y. Ono , K. Sano 2003
We study a two-band Hubbard model using the dynamical mean-field theory combined with the exact diagonalization method. At the electron density $n=2$, a transition from a band-insulator to a correlated semimetal occurs when the on-site Coulomb intera ction $U$ is varied for a fixed value of the charge-transfer energy $Delta$. At low temperature, the correlated semimetal shows ferromagnetism or superconductivity. With increasing doping $|n-2|$, the ferromagnetic transition temperature rapidly decreases and finally becomes zero at a critical value of $n$. The second-order phase transition occurs at high temperature, while a phase separation of ferromagnetic and paramagnetic states takes place at low temperature. The superconducting transition temperature gradually decreases and finally becomes zero near $n=1$ ($n=3$) where the system is Mott insulator which shows antiferromagnetism at low temperature.
We investigate the electronic states of a one-dimensional two-orbital Hubbard model with band splitting by the exact diagonalization method. The Luttinger liquid parameter $K_{rho}$ is calculated to obtain superconducting (SC) phase diagram as a func tion of on-site interactions: the intra- and inter-orbital Coulomb $U$ and $U$, the Hund coupling $J$, and the pair transfer $J$. In this model, electron and hole Fermi pockets are produced when the Fermi level crosses both the upper and lower orbital bands. We find that the system shows two types of SC phases, the SC Roman{u-large} for $U>U$ and the SC Roman{u-large} for $U<U$, in the wide parameter region including both weak and strong correlation regimes. Pairing correlation functions indicate that the most dominant pairing for the SC Roman{u-large} (SC Roman{u-large}) is the intersite (on-site) intraorbital spin-singlet with (without) sign reversal of the order parameters between two Fermi pockets. The result of the SC Roman{u-large} is consistent with the sign-reversing s-wave pairing that has recently been proposed for iron oxypnictide superconductors.
We explore the ground-state properties of the two-band Hubbard model with degenerate electronic bands, parametrized by nearest-neighbor hopping $t$, intra- and inter-orbital on-site Coulomb repulsions $U$ and $U^prime$, and Hund coupling $J$, focusin g on the case with $J>0$. Using Jastrow-Slater wave functions, we consider both states with and without magnetic/orbital order. Electron pairing can also be included in the wave function, in order to detect the occurrence of superconductivity for generic electron densities $n$. When no magnetic/orbital order is considered, the Mott transition is continuous for $n=1$ (quarter filling); instead, at $n=2$ (half filling), it is first order for small values of $J/U$, while it turns out to be continuous when the ratio $J/U$ is increased. A significant triplet pairing is present in a broad region around $n=2$. By contrast, singlet superconductivity (with $d$-wave symmetry) is detected only for small values of the Hund coupling and very close to half filling. When including magnetic and orbital order, the Mott insulator acquires antiferromagnetic order for $n=2$; instead, for $n=1$ the insulator has ferromagnetic and antiferro-orbital orders. In the latter case, a metallic phase is present for small values of $U/t$ and the metal-insulator transition becomes first order. In the region with $1<n<2$, we observe that ferromagnetism (with no orbital order) is particularly robust for large values of the Coulomb repulsion and that triplet superconductivity is strongly suppressed by the presence of antiferromagnetism. The case with $J=0$, which has an enlarged SU(4) symmetry due to the interplay between spin and orbital degrees of freedom, is also analyzed.
We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BC S pairing and magnetic order. At half filling, where the ground state is antiferromagnetically ordered for any value of the on-site interaction $U$, we can identify a hidden critical point $U_{rm Mott}$, above which a finite BCS pairing is stabilized in the wave function. The existence of this point is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater insulator (at small values of $U$), where magnetism induces a potential energy gain, and a Mott insulator (at large values of $U$), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence of $U_{rm Mott}$ has crucial consequences when doping the system: We observe a tendency to phase separation into a hole-rich and a hole-poor region only when doping the Slater insulator, while the system is uniform by doping the Mott insulator. Superconducting correlations are clearly observed above $U_{rm Mott}$, leading to the characteristic dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing above $U_{rm Mott}$ shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا