ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-point correlation function of density perturbations in a large void universe

79   0   0.0 ( 0 )
 نشر من قبل Ryusuke Nishikawa
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the two-point correlation function of density perturbations in a spherically symmetric void universe model which does not employ the Copernican principle. First we solve perturbation equations in the inhomogeneous universe model and obtain density fluctuations by using a method of non-linear perturbation theory which was adopted in our previous paper. From the obtained solutions, we calculate the two-point correlation function and show that it has a local anisotropy at the off-center position differently from those in homogeneous and isotropic universes. This anisotropy is caused by the tidal force in the off-center region of the spherical void. Since no tidal force exists in homogeneous and isotropic universes, we may test the inhomogeneous universe by observing statistical distortion of the two-point galaxy correlation function.

قيم البحث

اقرأ أيضاً

We study the evolution of linear density perturbations in a large spherical void universe which accounts for the acceleration of the cosmic volume expansion without introducing dark energy. The density contrast of this void is not large within the li ght cone of an observer at the center of the void. Therefore, we describe the void structure as a perturbation with a dimensionless small parameter $kappa$ in a homogeneous and isotropic universe within the region observable for the observer. We introduce additional anisotropic perturbations with a dimensionless small parameter $epsilon$, whose evolution is of interest. Then, we solve perturbation equations up to order $kappa epsilon$ by applying second-order perturbation theory in the homogeneous and isotropic universe model. By this method, we can know the evolution of anisotropic perturbations affected by the void structure. We show that the growth rate of the anisotropic density perturbations in the large void universe is significantly different from that in the homogeneous and isotropic universe. This result suggests that the observation of the distribution of galaxies may give a strong constraint on the large void universe model.
We perform theoretical and numerical studies of the full relativistic two-point galaxy correlation function, considering the linear-order scalar and tensor perturbation contributions and the wide-angle effects. Using the gauge-invariant relativistic description of galaxy clustering and accounting for the contributions at the observer position, we demonstrate that the complete theoretical expression is devoid of any long-mode contributions from scalar or tensor perturbations and it lacks the infrared divergences in agreement with the equivalence principle. By showing that the gravitational potential contribution to the correlation function converges in the infrared, our study justifies an IR cut-off $(k_{text{IR}} leq H_0)$ in computing the gravitational potential contribution. Using the full gauge-invariant expression, we numerically compute the galaxy two-point correlation function and study the individual contributions in the conformal Newtonian gauge. We find that the terms at the observer position such as the coordinate lapses and the observer velocity (missing in the standard formalism) dominate over the other relativistic contributions in the conformal Newtonian gauge such as the source velocity, the gravitational potential, the integrated Sachs-Wolf effect, the Shapiro time-delay and the lensing convergence. Compared to the standard Newtonian theoretical predictions that consider only the density fluctuation and redshift-space distortions, the relativistic effects in galaxy clustering result in a few percent-level systematic errors beyond the scale of the baryonic acoustic oscillation. Our theoretical and numerical study provides a comprehensive understanding of the relativistic effects in the galaxy two-point correlation function, as it proves the validity of the theoretical prediction and accounts for effects that are often neglected in its numerical evaluation.
We study the behaviour of linear perturbations in multifield coupled quintessence models. Using gauge invariant linear cosmological perturbation theory we provide the full set of governing equations for this class of models, and solve the system nume rically. We apply the numerical code to generate growth functions for various examples, and compare these both to the standard $Lambda$CDM model and to current and future observational bounds. Finally, we examine the applicability of the small scale approximation, often used to calculate growth functions in quintessence models, in light of upcoming experiments such as SKA and Euclid. We find the deviation of the full equation results for large k modes from the approximation exceeds the experimental uncertainty for these future surveys. The numerical code, PYESSENCE, written in Python will be publicly available.
58 - Shiv K. Sethi 2003
We study the effect of large scale tangled magnetic fields on the galaxy two-point correlation function in the redshift space. We show that (a) the magnetic field effects can be comparable the gravity-induced clustering for present magnetic field str ength $B_0 simeq 5 times 10^{-8}$ G, (b) the absence of this signal from the present data gives an upper bound $B_0 la 3 times 10^{-8}$ G, (c) the future data can probe the magnetic fields of $simeq 10^{-8}$ G. A comparison with other constraints on the present magnetic field shows that they are marginally compatible.However if the magenetic fields corresponding to $B_0 simeq 10^{-8}$ G existed at the last scattering surface they will cause unacceptably large CMBR anisotropies.
Spectral distortions of the cosmic microwave background (CMB) provide a unique tool for learning about the early phases of cosmic history, reaching deep into the primordial Universe. At redshifts $z<10^6$, thermalization processes become inefficient and existing limits from COBE/FIRAS imply that no more than $Delta rho/rho<6times 10^{-5}$ (95% c.l.) of energy could have been injected into the CMB. However, at higher redshifts, when thermalization is efficient, the constraint weakens and $Delta rho/rho simeq 0.01-0.1$ could in principle have occurred. Existing computations for the evolution of distortions commonly assume $Delta rho/rho ll 1$ and thus become inaccurate in this case. Similarly, relativistic temperature corrections become relevant for large energy release, but have previously not been modeled as carefully. Here we study the evolution of distortions and the thermalization process after single large energy release at $z>10^5$. We show that for large distortions the thermalization efficiency is significantly reduced and that the distortion visibility is sizeable to much earlier times. This tightens spectral distortions constraints on low-mass primordial black holes with masses $M_{rm PBH} < 6times 10^{11}$ g. Similarly, distortion limits on the amplitude of the small-scale curvature power spectrum at wavenumbers $k>10^4,{rm Mpc}^{-1}$ and short-lived decaying particles with lifetimes $t_X< 10^7$ s are tightened, however, these still require a more detailed time-dependent treatment. We also briefly discuss the constraints from measurements of the effective number of relativistic degrees of freedom and light element abundances and how these complement spectral distortion limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا