ﻻ يوجد ملخص باللغة العربية
We study the behaviour of linear perturbations in multifield coupled quintessence models. Using gauge invariant linear cosmological perturbation theory we provide the full set of governing equations for this class of models, and solve the system numerically. We apply the numerical code to generate growth functions for various examples, and compare these both to the standard $Lambda$CDM model and to current and future observational bounds. Finally, we examine the applicability of the small scale approximation, often used to calculate growth functions in quintessence models, in light of upcoming experiments such as SKA and Euclid. We find the deviation of the full equation results for large k modes from the approximation exceeds the experimental uncertainty for these future surveys. The numerical code, PYESSENCE, written in Python will be publicly available.
We derive a closed-form, analytical expression for the spectrum of long-wavelength density perturbations in inflationary models with two (or more) inflaton degrees of freedom that is valid in the slow-roll approximation. We illustrate several classes
We use linear perturbation theory to study perturbations in dynamical dark energy models. We compare quintessence and tachyonic dark energy models with identical background evolution. We write the corresponding equations for different models in a for
We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The growth of perturbations is followed beyond the linear level by means of the time-renormalization-group method, which is extended to describe a multi-comp
We study multifield inflation in scenarios where the fields are coupled non-minimally to gravity via $xi_I(phi^I)^n g^{mu u}R_{mu u}$, where $xi_I$ are coupling constants, $phi^I$ the fields driving inflation, $g_{mu u}$ the space-time metric, $R_{mu
We study the evolution of linear density perturbations in a large spherical void universe which accounts for the acceleration of the cosmic volume expansion without introducing dark energy. The density contrast of this void is not large within the li