ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of solar coronal loops: from miniature to large-scale

366   0   0.0 ( 0 )
 نشر من قبل Hardi Peter
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We will use new data from the High-resolution Coronal Imager (Hi-C) with unprecedented spatial resolution of the solar corona to investigate the structure of coronal loops down to 0.2 arcsec. During a rocket flight Hi-C provided images of the solar corona in a wavelength band around 193 A that is dominated by emission from Fe XII showing plasma at temperatures around 1.5 MK. We analyze part of the Hi-C field-of-view to study the smallest coronal loops observed so far and search for the a possible sub-structuring of larger loops. We find tiny 1.5 MK loop-like structures that we interpret as miniature coronal loops. These have length of the coronal segment above the chromosphere of only about 1 Mm and a thickness of less than 200 km. They could be interpreted as the coronal signature of small flux tubes breaking through the photosphere with a footpoint distance corresponding to the diameter of a cell of granulation. We find loops that are longer than 50 Mm to have a diameter of about 2 arcsec or 1.5 Mm, consistent with previous observations. However, Hi-C really resolves these loops with some 20 pixels across the loop. Even at this greatly improved spatial resolution the large loops seem to have no visible sub-structure. Instead they show a smooth variation in cross-section. The fact that the large coronal loops do not show a sub-structure at the spatial scale of 0.1 arcsec per pixel implies that either the densities and temperatures are smoothly varying across these loops or poses an upper limit on the diameter of strands the loops might be composed of. We estimate that strands that compose the 2 arcsec thick loop would have to be thinner than 15 km. The miniature loops we find for the first time pose a challenge to be properly understood in terms of modeling.

قيم البحث

اقرأ أيضاً

Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniatu
133 - Tongjiang Wang 2018
Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in active region coronal loops, including (i) flare-induced slow mode oscillations, (ii) fast kink mode oscillations, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvenic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide readers a useful guidance on further studies of their interested topics.
The high-cadence, comprehensive view of the solar corona by SDO/AIA shows many events that are widely separated in space while occurring close together in time. In some cases, sets of coronal events are evidently causally related, while in many other instances indirect evidence can be found. We present case studies to highlight a variety of coupling processes involved in coronal events. We find that physical linkages between events do occur, but concur with earlier studies that these couplings appear to be crucial to understanding the initiation of major eruptive or explosive phenomena relatively infrequently. We note that the post-eruption reconfiguration time scale of the large-scale corona, estimated from the EUV afterglow, is on average longer than the mean time between CMEs, so that many CMEs originate from a corona that is still adjusting from a previous event. We argue that the coronal field is intrinsically global: current systems build up over days to months, the relaxation after eruptions continues over many hours, and evolving connections easily span much of a hemisphere. This needs to be reflected in our modeling of the connections from the solar surface into the heliosphere to properly model the solar wind, its perturbations, and the generation and propagation of solar energetic particles. However, the large-scale field cannot be constructed reliably by currently available observational resources. We assess the potential of high-quality observations from beyond Earths perspective and advanced global modeling to understand the couplings between coronal events in the context of CMEs and solar energetic particle events.
Employing Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetical ly open structures, observed in AIA 171 A images above the solar limb, move downward and interact with the lower-lying closed loops, resulting in the formation of dips in the former. An X-type structure forms at the interface. The interacting loops reconnect and disappear. Two sets of newly-reconnected loops then form and recede from the MR region. During the MR process, bright emission appears sequentially in the AIA 131 A and 304 A channels repeatedly in the dips of higher-lying open structures. This indicates the cooling and condensation process of hotter plasma from ~0.9 MK down to ~0.6 MK, and then to ~0.05 MK, also supported by the light curves of the AIA 171 A, 131 A, and 304 A channels. The part of higher-lying open structures supporting the condensations participate in the successive MR. The condensations without support by underlying loops then rain back to the solar surface along the newly-reconnected loops. Our results suggest that the MR between coronal loops leads to the condensation of hotter coronal plasma and its downflows. MR thus plays an active role in the mass cycle of coronal plasma because it can initiate the catastrophic cooling and condensation. This underlines that the magnetic and thermal evolution has to be treated together and cannot be separated, even in the case of catastrophic cooling.
The Interface Region Imaging Spectrograph (IRIS) has observed bright spots at the transition region footpoints associated with heating in the overlying loops, as observed by coronal imagers. Some of these brightenings show significant blueshifts in t he Si iv line at 1402.77 A (logT[K] = 4.9). Such blueshifts cannot be reproduced by coronal loop models assuming heating by thermal conduction only, but are consistent with electron beam heating, highlighting for the first time the possible importance of non-thermal electrons in the heating of non-flaring active regions. Here we report on the coronal counterparts of these brightenings observed in the hot channels of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We show that the IRIS bright spots are the footpoints of very hot and transient coronal loops which clearly experience strong magnetic interactions and rearrangements, thus confirming the impulsive nature of the heating and providing important constraints for their physical interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا