ترغب بنشر مسار تعليمي؟ اضغط هنا

Waves in Solar Coronal Loops

134   0   0.0 ( 0 )
 نشر من قبل Tongjiang Wang Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tongjiang Wang




اسأل ChatGPT حول البحث

Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in active region coronal loops, including (i) flare-induced slow mode oscillations, (ii) fast kink mode oscillations, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvenic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide readers a useful guidance on further studies of their interested topics.

قيم البحث

اقرأ أيضاً

Using full three-dimensional magnetohydrodynamic numerical simulations, we study the effects of magnetic field sigmoidity or helicity on the properties of the fundamental kink oscillation of solar coronal loops. Our model consists of a single denser coronal loop, embedded in a plasma with dipolar force-free magnetic field with a constant alpha-parameter. For the loop with no sigmoidity, we find that the numerically determined oscillation period of the fundamental kink mode matches the theoretical period calculated using WKB theory. In contrast, with increasing sigmoidity of the loop, the actual period is increasingly smaller than the one estimated by WKB theory. Translated through coronal seismology, increasing sigmoidity results in magnetic field estimates which are increasingly shifting towards higher values, and even surpassing the average value for the highest alpha value considered. Nevertheless, the estimated range of the coronal magnetic field value lies within the mimimal/maximal limits, proving the robustness coronal seismology. We propose that the discrepancy in the estimations of the absolute value of the force-free magnetic field could be exploited seismologically to determine the free energy of coronal loops, if averages of the internal magnetic field and density can be reliably estimated by other methods.
Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called SUMER oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular interest in connection with coronal seismology. We review recent results from SDO/AIA and Hinode/XRT observations that have detected both standing and reflected intensity oscillations in hot flaring loops showing the physical properties (e.g., oscillation periods, decay times, and triggers) in accord with the SUMER oscillations. We also review recent advances in theory and numerical modeling of slow-mode waves focusing on the wave excitation and damping mechanisms. MHD simulations in 1D, 2D and 3D have been dedicated to understanding the physical conditions for the generation of a reflected propagating or a standing wave by impulsive heating. Various damping mechanisms and their analysis methods are summarized. Calculations based on linear theory suggest that the non-ideal MHD effects such as thermal conduction, compressive viscosity, and optically thin radiation may dominate in damping of slow-mode waves in coronal loops of different physical conditions. Finally, an overview is given of several important seismological applications such as determination of transport coefficients and heating function.
Employing Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetical ly open structures, observed in AIA 171 A images above the solar limb, move downward and interact with the lower-lying closed loops, resulting in the formation of dips in the former. An X-type structure forms at the interface. The interacting loops reconnect and disappear. Two sets of newly-reconnected loops then form and recede from the MR region. During the MR process, bright emission appears sequentially in the AIA 131 A and 304 A channels repeatedly in the dips of higher-lying open structures. This indicates the cooling and condensation process of hotter plasma from ~0.9 MK down to ~0.6 MK, and then to ~0.05 MK, also supported by the light curves of the AIA 171 A, 131 A, and 304 A channels. The part of higher-lying open structures supporting the condensations participate in the successive MR. The condensations without support by underlying loops then rain back to the solar surface along the newly-reconnected loops. Our results suggest that the MR between coronal loops leads to the condensation of hotter coronal plasma and its downflows. MR thus plays an active role in the mass cycle of coronal plasma because it can initiate the catastrophic cooling and condensation. This underlines that the magnetic and thermal evolution has to be treated together and cannot be separated, even in the case of catastrophic cooling.
Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we have presented coronal condensations caused by magnetic reconnection between a system of open and closed solar coronal loops. In this Letter, we repor t the quasi-periodic fast magnetoacoustic waves propagating away from the reconnection region upward across the higher-lying open loops during the reconnection process. On 2012 January 19, reconnection between the higher-lying open loops and lower-lying closed loops took place, and two sets of newly reconnected loops formed. Thereafter, cooling and condensations of coronal plasma occurred in the magnetic dip region of higher-lying open loops. During the reconnection process, disturbances originating from the reconnection region propagate upward across the magnetic dip region of higher-lying loops with the mean speed and mean speed amplitude of 200 and 30 km s$^{-1}$, respectively. The mean speed of the propagating disturbances decreases from $sim$230 km s$^{-1}$ to $sim$150 km s$^{-1}$ during the coronal condensation process, and then increases to $sim$220 km s$^{-1}$. This temporal evolution of the mean speed anti-correlates with the light curves of the AIA 131 and 304 AA~channels that show the cooling and condensation process of coronal plasma. Furthermore, the propagating disturbances appear quasi-periodically with a peak period of 4 minutes. Our results suggest that the disturbances represent the quasi-periodic fast propagating magnetoacoustic (QFPM) waves originating from the magnetic reconnection between coronal loops.
Evidence of flare induced, large-amplitude, decay-less transverse oscillations is presented. A system of multi-thermal coronal loops as observed with the Atmospheric Imaging Assembly (AIA), exhibit decay-less transverse oscillations after a flare eru pts nearby one of the loop footpoints. Measured oscillation periods lie between 4.2 min and 6.9 min wherein the displacement amplitudes range from 0.17 Mm to 1.16 Mm. A motion-magnification technique is employed to detect the pre-flare decay-less oscillations. These oscillations have similar periods (between 3.7 min and 5.0 min) like the previous ones but their amplitudes (0.04 Mm to 0.12 Mm) are found to be significantly smaller. No phase difference is found among oscillating threads of a loop when observed through a particular AIA channel or when their multi-channel signatures are compared. These features suggest that the occurrence of a flare in this case neither changed the nature of these oscillations (decaying vs decay-less) nor the oscillation periods. The only effect the flare has is to increase the oscillation amplitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا