ﻻ يوجد ملخص باللغة العربية
We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, $alpha$. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of $alpha$, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution and scale-dependence of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web and yields a promising measure of cosmological parameters. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field.
We study the topology of the Megaparsec Cosmic Web on the basis of the Alpha Shapes of the galaxy distribution. The simplicial complexes of the alpha shapes are used to determine the set of Betti numbers ($beta_{rm k},k=1,...,D$), which represent a c
We introduce a multiscale topological description of the Megaparsec weblike cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multis
Using a set of $Lambda$CDM simulations of cosmic structure formation, we study the evolving connectivity and changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We follow the de
The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of
We investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the NEXUS+ algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the v