ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the cosmic web

124   0   0.0 ( 0 )
 نشر من قبل Marius C. Cautun
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marius Cautun




اسأل ChatGPT حول البحث

We investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the NEXUS+ algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the very intricate and hierarchical pattern that is the cosmic web. In particular, we characterize filaments (walls) in terms of their linear (surface) mass density. This is very good in capturing the evolution of these structures. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. We also show that voids are more naturally described in terms of their boundaries and not their centres. We illustrate this for void density profiles, which, when expressed as a function of the distance from void boundary, show a universal profile in good qualitative agreement with the theoretical shell-crossing framework of expanding underdense regions.


قيم البحث

اقرأ أيضاً

Our goal is to see how density waves of different scale combine to form voids between galaxy systems of various scale. We perform numerical simulations of structure formation in cubes of size 100 and 256 Mpc/h, with resolutions 256^3 and 512^3 partic les and cells. To understand the role of density perturbations of various scale we cut power spectra at scales from 8 to 128 Mpc/h, using in all series identical initial random realisations. We find that small haloes and short filaments form all over the simulation box, if perturbations only up to scale 8 Mpc/h are present. The phenomenon of large multi-scale voids in the cosmic web requires the presence of an extended spectrum of primordial density perturbations. The void phenomenon is due to the action of two processes: the synchronisation of density perturbations of medium and large scales, and the suppression of galaxy formation in low-density regions by the combined action of negative sections of medium- and large-scale density perturbations, so that their densities are less than the mean density, and thus during the evolution their densities decrease.
The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast lo w density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web -- depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper we bring twelve of these methods together and apply them to the same data set in order to understand how they compare. In general these cosmic web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore one would not {it a priori} expect agreement between different techniques however, many of these methods do converge on the identification of specific features. In this paper we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. $M_{rm halo}sim10^{13.5}h^{-1}M_{odot}$) as being in filaments. Lastly, so that any future cosmic web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.
116 - Marius Cautun 2014
The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of structure formation processes. Here we investigate the characteristics and the time evolution of morphological components since. Our analysis involves the application of the NEXUS Multiscale Morphology Filter (MMF) technique, predominantly its NEXUS+ version, to high resolution and large volume cosmological simulations. We quantify the cosmic web components in terms of their mass and volume content, their density distribution and halo populations. We employ new analysis techniques to determine the spatial extent of filaments and sheets, like their total length and local width. This analysis identifies cluster and filaments as the most prominent components of the web. In contrast, while voids and sheets take most of the volume, they correspond to underdense environments and are devoid of group-sized and more massive haloes. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. The analysis of the mass transport between environments clearly shows how matter flows from voids into walls, and then via filaments into cluster regions, which form the nodes of the cosmic web. We also study the properties of individual filamentary branches, to find long, almost straight, filaments extending to distances larger than 100Mpc/h. These constitute the bridges between massive clusters, which seem to form along approximatively straight lines.
The concept of the cosmic web, viewing the Universe as a set of discrete galaxies held together by gravity, is deeply engrained in cosmology. Yet, little is known about the most effective construction and the characteristics of the underlying network . Here we explore seven network construction algorithms that use various galaxy properties, from their location, to their size and relative velocity, to assign a network to galaxy distributions provided by both simulations and observations. We find that a model relying only on spatial proximity offers the best correlations between the physical characteristics of the connected galaxies. We show that the properties of the networks generated from simulations and observations are identical, unveiling a deep universality of the cosmic web.
We present a general formalism for identifying the caustic structure of an evolving mass distribution in an arbitrary dimensional space. For the class of Hamiltonian fluids the identification corresponds to the classification of singularities in Lagr angian catastrophe theory. Based on this we develop a theoretical framework for the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. The present work represents an extension of the work by Arnold et al., who classified the caustics for the 1- and 2-dimensional Zeldovich approximation. His seminal work established the role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. We introduce an alternative and transparent proof for Lagrangian catastrophe theory, and derive the caustic conditions for general Lagrangian fluids, with arbitrary dynamics, including dissipative terms and vorticity. The new proof allows us to describe the full 3-dimensional complexity of the gravitationally evolving cosmic matter field. One of our key findings is the significance of the eigenvector field of the deformation field for outlining the spatial structure of the caustic skeleton. We consider the caustic conditions for the 3-dimensional Zeldovich approximation, extending earlier work on those for 1- and 2-dimensional fluids towards the full spatial richness of the cosmic web.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا