ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control at its most fundamental: CEP-dependent electron localization in photodissoziation of a H2+ molecular ion beam target

41   0   0.0 ( 0 )
 نشر من قبل Tim Rathje TR
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements and calculations of the absolute carrier-envelope phase (CEP) effects in the photodissociation of the simplest molecule, H2+, with a 4.5-fs Ti:Sapphire laser pulse at intensities up to (4 +- 2)x10^14 Watt/cm^2 are presented. Localization of the electron with respect to the two nuclei (during the dissociation process) is controlled via the CEP of the ultra-short laser pulses. In contrast to previous CEP-dependent experiments with neutral molecules, the dissociation of the molecular ions is not preceded by a photoionization process, which strongly influences the CEP dependence. Kinematically complete data is obtained by time- and position-resolved coincidence detection. The phase dependence is determined by a single-shot phase measurement correlated to the detection of the dissoziation fragments. The experimental results show quantitative agreement with ab inito 3D-TDSE calculations that include nuclear vibration and rotation.

قيم البحث

اقرأ أيضاً

177 - A. Hashemloo , C. M. Dion 2015
We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical, the other where the center-of-mass motion is treated classically while rotational motion is quantized. We study t he rotational dynamics and their influence on the motion of the center-of-mass, in the presence of the coupling between the permanent dipole moment of the ion and the trapping electric field. We show that the presence of the permanent dipole moment affects the trajectory of the ion, and that it departs from the Mathieu equation solution found for atomic ions. For the case of quantum rotations, we also evidence the effect of the above-mentioned coupling on the rotational states of the ion.
It is shown that the molecular ion ${rm H}^{++}_3$ does not exist in a form of the equilateral triangle. To this end, a compact variational method is presented which is based on a linear superposition of six specially tailored trial functions contain ing non-linear parameters. Careful optimization of a total of fifteen parameters gives consistently lower variational results for the electronic energy than can be obtained with standard methods of quantum chemistry even with huge basis sets as large as mcc-pV7Z.
We discuss and measure the phase shift imposed onto a radially polarized light beam when focusing it onto an $^{174}text{Yb}^{+}$ ion. In the derivation of the expected phase shifts we include the properties of the involved atomic levels. Furthermore , we emphasize the importance of the scattering cross section and its relation to the efficiency for coupling the focused light to an atom. The phase shifts found in the experiment are compatible with the expected ones when accounting for known deficiencies of the focusing optics and the motion of the trapped ion at the Doppler limit of laser cooling.
Trapped ions are a well-studied and promising system for the realization of a scalable quantum computer. Faster quantum gates would greatly improve the applicability of such a system and allow for greater flexibility in the number of calculation step s. In this paper we present a pulsed laser system, delivering picosecond pulses at a repetition rate of 5 GHz and resonant to the S$_{1/2}$ to P$_{3/2}$ transition in Ca$^+$ for coherent population transfer to implement fast phase gate operations. The optical pulse train is derived from a mode-locked, stabilized optical frequency comb and inherits its frequency stability. Using a single trapped ion, we implement three different techniques for measuring the ion-laser coupling strength and characterizing the pulse train emitted by the laser, and show how all requirements can be met for an implementation of a fast phase gate operation.
The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF reconstruction, this protocol makes use of time-resolved LF measurements, in which a rotational wavepacket is prepared and probed via photoionization, followed by a numerical reconstruction routine; however, in contrast to other methodologies, the protocol developed herein does not require determination of photoionization matrix elements, and consequently takes a relatively simple numerical form (matrix transform making use of the Moore-Penrose inverse). Significantly, the simplicity allows application of the method to the successful reconstruction of MFPADs for polyatomic molecules. The scheme is demonstrated numerically for two realistic cases, $N_2$ and $C_2H_4$. The new technique is expected to be generally applicable for a range of MF reconstruction problems involving photoionization of polyatomic molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا