ﻻ يوجد ملخص باللغة العربية
Trapped ions are a well-studied and promising system for the realization of a scalable quantum computer. Faster quantum gates would greatly improve the applicability of such a system and allow for greater flexibility in the number of calculation steps. In this paper we present a pulsed laser system, delivering picosecond pulses at a repetition rate of 5 GHz and resonant to the S$_{1/2}$ to P$_{3/2}$ transition in Ca$^+$ for coherent population transfer to implement fast phase gate operations. The optical pulse train is derived from a mode-locked, stabilized optical frequency comb and inherits its frequency stability. Using a single trapped ion, we implement three different techniques for measuring the ion-laser coupling strength and characterizing the pulse train emitted by the laser, and show how all requirements can be met for an implementation of a fast phase gate operation.
We demonstrate the implementation of a spin qubit with a single Ca ion in a micro ion trap. The qubit is encoded in the Zeeman ground state levels mJ=+1/2 and mJ=-1/2 of the S1/2 state of the ion. We show sideband cooling close to the vibrational gro
We demonstrate key multi-qubit quantum logic primitives in a dual-species trapped-ion system based on $^{40}$Ca+ and $^{88}$Sr+ ions, using two optical qubits with quantum-logic-control frequencies in the red to near-infrared range. With all ionizati
We discuss and measure the phase shift imposed onto a radially polarized light beam when focusing it onto an $^{174}text{Yb}^{+}$ ion. In the derivation of the expected phase shifts we include the properties of the involved atomic levels. Furthermore
$^{133}text{Ba}^+$ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1/2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we t
We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to