ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton dynamics in emergent Rydberg lattices

99   0   0.0 ( 0 )
 نشر من قبل Cenap Ates
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of excitons in a one-dimensional ensemble with partial spatial order are studied. During optical excitation, cold Rydberg atoms spontaneously organize into regular spatial arrangements due to their mutual interactions. This emergent lattice is used as the starting point to study resonant energy transfer triggered by driving a $nS$ to $n^prime P$ transition using a microwave field. The dynamics are probed by detecting the survival probability of atoms in the $nS$ Rydberg state. Experimental data qualitatively agree with our theoretical predictions including the mapping onto XXZ spin model in the strong-driving limit. Our results suggest that emergent Rydberg lattices provide an ideal platform to study coherent energy transfer in structured media without the need for externally imposed potentials.



قيم البحث

اقرأ أيضاً

We show that resonant dipole-dipole interactions between Rydberg atoms in a triangular lattice can give rise to artificial magnetic fields for spin excitations. We consider the coherent dipole-dipole coupling between $np$ and $ns$ Rydberg states and derive an effective spin-1/2 Hamiltonian for the $np$ excitations. By breaking time-reversal symmetry via external fields we engineer complex hopping amplitudes for transitions between two rectangular sub-lattices. The phase of these hopping amplitudes depends on the direction of the hop. This gives rise to a staggered, artificial magnetic field which induces non-trivial topological effects. We calculate the single-particle band structure and investigate its Chern numbers as a function of the lattice parameters and the detuning between the two sub-lattices. We identify extended parameter regimes where the Chern number of the lowest band is $C=1$ or $C=2$.
We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on Rydberg-atom lifetime ranges from noticeable to highly dominant when compared with natural decay. The PI behavior is governed by the generally rapid decrease of the PI cross sections as a function of angular-momentum ($ell$), and by lattice-induced $ell$-mixing across the optical-lattice PECs. In GHz-deep lattices, $ell$-mixing leads to a rich PEC structure, and the significant low-$ell$ PI cross sections are distributed over many lattice-mixed Rydberg states. In lattices less than several tens-of-MHz deep, atoms on low-$ell$ PECs are essentially $ell$-mixing-free and maintain large PI cross sections, while atoms on high-$ell$ PECs trend towards being PI-free. Characterization of PI in GHz-deep Rydberg-atom lattices may be beneficial for optical control and quantum-state manipulation of Rydberg atoms, while data on PI in shallower lattices are potentially useful in high-precision spectroscopy and quantum-computing applications of lattice-confined Rydberg atoms.
119 - R. Mukherjee , J. Millen , R. Nath 2011
We explore the prospects for confining alkaline-earth Rydberg atoms in an optical lattice via optical dressing of the secondary core valence electron. Focussing on the particular case of strontium, we identify experimentally accessible magic waveleng ths for simultaneous trapping of ground and Rydberg states. A detailed analysis of relevant loss mechanisms shows that the overall lifetime of such a system is limited only by the spontaneous decay of the Rydberg state, and is not significantly affected by photoionization or autoionization. The van der Waals C_6 coefficients for the 5sns series are calculated, and we find that the interactions are attractive. Finally we show that the combination of magic-wavelength lattices and attractive interactions could be exploited to generate many-body Greenberger-Horne-Zeilinger (GHZ) states.
163 - Peter Schauss 2017
Finite-range interacting spin models are the simplest models to study the effect of beyond nearest-neighbour interactions and access new effects caused by the range of the interactions. Recent experiments have reached the regime of dominant interacti ons in Ising quantum magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising Hamiltonian with $1/r^6$ interactions in a transverse and longitudinal field. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. The strong correlations in this quantum Ising model have been observed in several experiments up to the point of crystallization. In systems with a diameter small compared to the Rydberg blockade radius, the number of excitations is maximally one in the so-called superatom regime.
118 - Shilin Hu , Xiaolei Hao , Hang Lv 2019
Neutral atoms have been observed to survive intense laser pulses in high Rydberg states with surprisingly large probability. Only with this Rydberg-state excitation (RSE) included is the picture of intense-laser-atom interaction complete. Various mec hanisms have been proposed to explain the underlying physics. However, neither one can explain all the features observed in experiments and in time-dependent Schr{o}dinger equation (TDSE) simulations. Here we propose a fully quantum-mechanical model based on the strong-field approximation (SFA). It well reproduces the intensity dependence of RSE obtained by the TDSE, which exhibits a series of modulated peaks. They are due to recapture of the liberated electron and the fact that the pertinent probability strongly depends on the position and the parity of the Rydberg state. We also present measurements of RSE in xenon at 800 nm, which display the peak structure consistent with the calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا