ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate-Age Stellar Populations in Classical QSO Host Galaxies

689   0   0.0 ( 0 )
 نشر من قبل Gabriela Canalizo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although mergers and starbursts are often invoked in the discussion of QSO activity in the context of galaxy evolution, several studies have questioned their importance or even their presence in QSO host galaxies. Accordingly, we are conducting a study of z~0.2 QSO host galaxies previously classified as passively evolving elliptical galaxies. We present deep Keck LRIS spectroscopy of a sample of 15 hosts and model their stellar absorption spectra using stellar synthesis models. The high S/N of our spectra allow us to break various degeneracies that arise from different combinations of models, varying metallicities, and contamination from QSO light. We find that none of the host spectra can be modeled by purely old stellar populations and that the majority of the hosts (14/15) have a substantial contribution from intermediate-age populations with ages ranging from 0.7 to 2.4 Gyr. An average host spectrum is strikingly well fit by a combination of an old population and a 2.1 (+0.5, -0.7) Gyr population. The morphologies of the host galaxies suggest that these aging starbursts were induced during the early stages of the mergers that resulted in the elliptical-shaped galaxies that we observe. The current AGN activity likely corresponds to the late episodes of accretion predicted by numerical simulations, which occur near the end of the mergers, whereas earlier episodes may be more difficult to observe due to obscuration. Our off-axis observations prevent us from detecting any current star formation or young stellar populations that may be present in the central few kiloparsecs.

قيم البحث

اقرأ أيضاً

We have traced the spatial distributions of intermediate-age and old stars in nine dwarf galaxies in the distant parts of the Local Group, using multi-epoch 3.6 and 4.5 micron data from the DUST in Nearby Galaxies with Spitzer (DUSTiNGS) survey. Usin g complementary optical imaging from the Hubble Space Telescope, we identify the tip of the red giant branch (TRGB) in the 3.6 micron photometry, separating thermally-pulsating asymptotic giant branch (TP-AGB) stars from the larger red giant branch (RGB) populations. Unlike the constant TRGB in the I-band, at 3.6 micron the TRGB magnitude varies by ~0.7 mag, making it unreliable as a distance indicator. The intermediate-age and old stars are well mixed in two-thirds of the sample with no evidence of a gradient in the ratio of the intermediate-age to old stellar populations outside the central ~1-2. Variable AGB stars are detected in the outer extremities of the galaxies, indicating that chemical enrichment from these dust-producing stars may occur in the outer regions of galaxies with some frequency. Theories of structure formation in dwarf galaxies must account for the lack of radial gradients in intermediate-age populations and the presence of these stars in the outer extremities of dwarfs. Finally, we identify unique features in individual galaxies, such as extended tidal features in Sex A and Sag DIG and a central concentration of AGB stars in the inner regions of NGC 185 and NGC 147.
We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae. The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates of the host galaxies p rovide circumstantial evidence on the origin of each supernova type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific star formation rates. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our supernova sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the supernovae discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.
Quasi-stellar objects (QSOs) occur in galaxies in which supermassive black holes (SMBHs) are growing substantially through rapid accretion of gas. Many popular models of the co-evolutionary growth of galaxies and SMBHs predict that QSOs are also site s of substantial recent star formation, mediated by important processes, such as major mergers, which rapidly transform the nature of galaxies. A detailed study of the star-forming properties of QSOs is a critical test of such models. We present a far-infrared Herschel/PACS study of the mean star formation rate (SFR) of a sample of spectroscopically observed QSOs to z~2 from the COSMOS extragalactic survey. This is the largest sample to date of moderately luminous AGNs studied using uniform, deep far-infrared photometry. We study trends of the mean SFR with redshift, black hole mass, nuclear bolometric luminosity and specific accretion rate (Eddington ratio). To minimize systematics, we have undertaken a uniform determination of SMBH properties, as well as an analysis of important selection effects within spectroscopic QSO samples that influence the interpretation of SFR trends. We find that the mean SFRs of these QSOs are consistent with those of normal massive star-forming galaxies with a fixed scaling between SMBH and galaxy mass at all redshifts. No strong enhancement in SFR is found even among the most rapidly accreting systems, at odds with several co-evolutionary models. Finally, we consider the qualitative effects on mean SFR trends from different assumptions about the star-forming properties of QSO hosts and redshift evolution of the SMBH-galaxy relationship. While limited currently by uncertainties, valuable constraints on AGN-galaxy co-evolution can emerge from our approach.
We use stellar population synthesis modeling to analyze the host galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z ~ 2 - 3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host galaxy properties. We compare AGN host galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and SFRs than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star-formation activity in star-forming galaxies at z ~ 2 - 3. We suggest that a correlation between M_BH and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
127 - O. Vega , A. Bressan , P. Panuzzo 2010
We present the analysis of Spitzer-IRS spectra of four early-type galaxies, NGC 1297, NGC 5044, NGC 6868, and NGC 7079, all classified as LINERs in the optical bands. Their IRS spectra present the full series of H2 rotational emission lines in the ra nge 5--38 microns, atomic lines, and prominent PAH features. We investigate the nature and origin of the PAH emission, characterized by unusually low 6 -- 9/11.3 microns inter-band ratios. After the subtraction of a passive early type galaxy template, we find that the 7 -- 9 microns spectral region requires dust features not normally present in star forming galaxies. Each spectrum is then analyzed with the aim of identifying their components and origin. In contrast to normal star forming galaxies, where cationic PAH emission prevails, our 6--14 microns spectra seem to be dominated by large and neutral PAH emission, responsible for the low 6 -- 9/11.3 microns ratios, plus two broad dust emission features peaking at 8.2 microns and 12 microns. Theses broad components, observed until now mainly in evolved carbon stars and usually attributed to pristine material, contribute approximately 30-50% of the total PAH flux in the 6--14 microns region. We propose that the PAH molecules in our ETGs arise from fresh carbonaceous material which is continuously released by a population of carbon stars, formed in a rejuvenation episode which occurred within the last few Gyr. The analysis of the MIR spectra allows us to infer that, in order to maintain the peculiar size and charge distributions biased to large and neutral PAHs, this material must be shocked, and excited by the weak UV interstellar radiation field of our ETG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا