ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual PAH Emission in Nearby Early-Type Galaxies: A Signature of an Intermediate Age Stellar Population?

228   0   0.0 ( 0 )
 نشر من قبل Olga Vega
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of Spitzer-IRS spectra of four early-type galaxies, NGC 1297, NGC 5044, NGC 6868, and NGC 7079, all classified as LINERs in the optical bands. Their IRS spectra present the full series of H2 rotational emission lines in the range 5--38 microns, atomic lines, and prominent PAH features. We investigate the nature and origin of the PAH emission, characterized by unusually low 6 -- 9/11.3 microns inter-band ratios. After the subtraction of a passive early type galaxy template, we find that the 7 -- 9 microns spectral region requires dust features not normally present in star forming galaxies. Each spectrum is then analyzed with the aim of identifying their components and origin. In contrast to normal star forming galaxies, where cationic PAH emission prevails, our 6--14 microns spectra seem to be dominated by large and neutral PAH emission, responsible for the low 6 -- 9/11.3 microns ratios, plus two broad dust emission features peaking at 8.2 microns and 12 microns. Theses broad components, observed until now mainly in evolved carbon stars and usually attributed to pristine material, contribute approximately 30-50% of the total PAH flux in the 6--14 microns region. We propose that the PAH molecules in our ETGs arise from fresh carbonaceous material which is continuously released by a population of carbon stars, formed in a rejuvenation episode which occurred within the last few Gyr. The analysis of the MIR spectra allows us to infer that, in order to maintain the peculiar size and charge distributions biased to large and neutral PAHs, this material must be shocked, and excited by the weak UV interstellar radiation field of our ETG.



قيم البحث

اقرأ أيضاً

Although mergers and starbursts are often invoked in the discussion of QSO activity in the context of galaxy evolution, several studies have questioned their importance or even their presence in QSO host galaxies. Accordingly, we are conducting a stu dy of z~0.2 QSO host galaxies previously classified as passively evolving elliptical galaxies. We present deep Keck LRIS spectroscopy of a sample of 15 hosts and model their stellar absorption spectra using stellar synthesis models. The high S/N of our spectra allow us to break various degeneracies that arise from different combinations of models, varying metallicities, and contamination from QSO light. We find that none of the host spectra can be modeled by purely old stellar populations and that the majority of the hosts (14/15) have a substantial contribution from intermediate-age populations with ages ranging from 0.7 to 2.4 Gyr. An average host spectrum is strikingly well fit by a combination of an old population and a 2.1 (+0.5, -0.7) Gyr population. The morphologies of the host galaxies suggest that these aging starbursts were induced during the early stages of the mergers that resulted in the elliptical-shaped galaxies that we observe. The current AGN activity likely corresponds to the late episodes of accretion predicted by numerical simulations, which occur near the end of the mergers, whereas earlier episodes may be more difficult to observe due to obscuration. Our off-axis observations prevent us from detecting any current star formation or young stellar populations that may be present in the central few kiloparsecs.
[Abridged] Using VLT/FORS2 spectroscopy, we have studied the properties of the central stellar populations of a sample of 38 nucleated early-type dwarf (dE) galaxies in the Virgo Cluster. We find that these galaxies do not exhibit the same average st ellar population characteristics for different morphological subclasses. The nucleated galaxies without discs are older and more metal poor than the dEs with discs . The alpha-element abundance ratio appears consistent with the solar value for both morphological types. Besides a well-defined relation of metallicity and luminosity, we also find a clear anti-correlation between age and luminosity. More specifically, there appears to be a bimodality: brighter galaxies, including the discy ones, exhibit significantly younger ages than fainter dEs. Therefore, it appears less likely that fainter and brighter dEs have experienced the same evolutionary history, as the well-established trend of decreasing average stellar age when going from the most luminous ellipticals towards low-luminosity Es and bright dEs is broken here. The older and more metal-poor dEs could have had an early termination of star formation activity, possibly being primordial galaxies in the sense that they have formed along with the protocluster or experienced very early infall. By contrast, the younger and relatively metal-rich brighter dEs, most of which have discs, might have undergone structural transformation of infalling disc galaxies.
61 - Minjin Kim , Luis C. Ho 2019
To understand the physical origin of the close connection between supermassive black holes and their host galaxies, it is vital to investigate star formation properties in active galaxies. Using a large dataset of nearby type 1 active galactic nuclei (AGNs) with detailed structural decomposition based on high-resolution optical images obtained with the Hubble Space Telescope, we study the correlation between black hole mass and bulge luminosity and the (Kormendy) relation between bulge effective radius and surface brightness. In both relations, the bulges of type 1 AGNs tend to be more luminous than those of inactive galaxies with the same black hole mass or the same bulge size. This suggests that the central regions of AGN host galaxies have characteristically lower mass-to-light ratios than inactive galaxies, most likely due to the presence of a younger stellar population in active systems. In addition, the degree of luminosity excess appears to be proportional to the accretion rate of the AGN, revealing a physical connection between stellar growth and black hole growth. Adopting a simple toy model for the increase of stellar mass and black hole mass, we show that the fraction of young stellar population flattens out toward high accretion rates, possibly reflecting the influence of AGN-driven feedback.
161 - S. Pellegrini 2010
Nuclear hard X-ray luminosities (Lx,nuc) for a sample of 112 early type galaxies within a distance of 67 Mpc are used to investigate their relationship with the central galactic black hole mass Mbh, the inner galactic structure (using the parameters describing its cuspiness), the age of the stellar population in the central galactic region, the hot gas content and the core radio luminosity. Lx,nuc ranges from 10^{38} to 10^{42} erg/s, and the Eddington ratio Lx,nuc/Ledd from 10^{-9} to 10^{-4}. Lx,nuc increases on average with the galactic luminosity Lb and Mbh, with a wide variation by up to 4 orders of magnitude at any fixed Lb>6x10^9 Lb,sun or Mbh>10^7 Msun. This large range should reflect a large variation of the mass accretion rate dotMbh. On the circumnuclear scale, dotMbh at fixed Lb (or Mbh) could vary due to differences in the fuel production rate from the stellar mass return linked to the inner galactic structure; however, dotMbh should vary with cuspiness by a factor exceeding a few only in hot gas poor galaxies and for large differences in the core radius. Lx,nuc does not depend on age, but less luminous nuclei are found among galaxies with a younger stellar component. Lx,nuc is detected both in gas poor and gas rich galaxies, on average increases with the total galactic hot gas cooling rate L_{X,ISM}, but again with a large variation. The lack of a tight relationship between Lx,nuc and the circumnuclear and total gas content can be explained if the gas is heated by black hole feedback, and/or the mass effectively accreted can be largely reduced with respect to that entering the circumnuclear region. Differently from Lx,nuc, the 5 GHz VLA luminosity shows a trend with the inner galactic structure similar to that of the total soft X-ray emission; therefore they could both be produced by the hot gas.
We present GALEX far-ultraviolet (FUV, $lambda_{eff}$=1538 AA) and near-ultraviolet (NUV, $lambda_{eff}$=2316 AA) surface photometry of 40 early-type galaxies (ETGs) selected from a wider sample of 65 nearby ETGs showing emission lines in their optic al spectra. We derive FUV and NUV surface brightness profiles, (FUV-NUV) colour profiles and D$_{25}$ integrated magnitudes. We extend the photometric study to the optical {it r} band from SDSS imaging for 14 of these ETGs. In general, the (FUV-NUV) radial colour profiles become redder with galactocentric distance in both rejuvenated ($leq 4$ Gyr) and old ETGs. Colour profiles of NGC 1533, NGC 2962, NGC 2974, NGC 3489, and IC 5063 show rings and/or arm-like structures, bluer than the body of the galaxy, suggesting the presence of recent star formation. Although seven of our ETGs show shell systems in their optical image, only NGC 7135 displays shells in the UV bands. We characterize the UV and optical surface brightness profiles, along the major axis, using a Sersic law. The Sersic law exponent, $n$, varies from 1 to 16 in the UV bands. S0 galaxies tend to have lower values of $n$ ($leq5$). The Sersic law exponent $n=4$ seems to be a watershed: ETGs with $n>4$ tend to have [$alpha$/Fe] greater than 0.15, implying a short star-formation time scale. We find a significant correlation between the FUV$-$NUV colour and central velocity dispersions $sigma$, with the UV colours getting bluer at larger $sigma$. This trend is likely driven by a combined effect of `downsizing and of the mass-metallicity relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا