ﻻ يوجد ملخص باللغة العربية
The combination of two-dimensional Dirac surface states with s-wave superconductivity is expected to generate localized topological Majorana zero modes in vortex cores. Putative experimental signatures of these modes have been reported for heterostructures of proximitized topological insulators, iron-based superconductors or certain transition metal dichalcogenides. Despite these efforts, the Majorana nature of the observed excitation is still under debate. We propose to identify the presence of Majorana vortex modes using a non-local transport measurement protocol originally proposed for one-dimensional settings. In the case of an isolated subgap state, the protocol provides a spatial map of the ratio of local charge- and probability-density which offers a clear distinction between Majorana and ordinary fermionic modes. We show that these distinctive features survive in the experimentally relevant case of hybridizing vortex core modes.
A spatially oscillating pair potential $Delta(r)=Delta_0 e^{2i Kcdot r}$ with momentum $K>Delta_0/hbar v$ drives a deconfinement transition of the Majorana bound states in the vortex cores of a Fu-Kane heterostructure (a 3D topological insulator with
The non-local coherent nature of the Majorana devices is one of the key factors for realizing decoherence-free topological qubits. Direct observation of this coherent nature could provide a first-step benchmarking scheme to validate Majorana qubit qu
Superconductors connected to normal metallic electrodes at the nanoscale provide a potential source of non-locally entangled electron pairs. Such states would arise from Cooper pairs splitting into two electrons with opposite spins tunnelling into di
A pair of Majorana zero modes (MZMs) constitutes a nonlocal qubit whose entropy is $log 2$. Upon strongly coupling one of the constituent MZMs to a reservoir with a continuous density of states, a universal entropy change of $frac{1}{2}log 2$ is expe
We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Due to both strong energy and density fluctuations caused from the superconducting proximity effect, the Flo