ﻻ يوجد ملخص باللغة العربية
Magnetic fluctuations in the molecular-intercalated FeSe superconductor Li{x}(ND2){y}(ND3){1-y}Fe2Se2 (Tc = 43K) have been measured by inelastic neutron scattering from a powder sample. The strongest magnetic scattering is observed at a wave vector Q ~ 1.4 A^{-1}, which is not consistent with the (pi,0) nesting wave vector that characterizes magnetic fluctuations in several other iron-based superconductors, but is close to the (pi, pi/2) position found for A{x}Fe{2-y}Se2 systems. At the energies probed (~ 5kB Tc), the magnetic scattering increases in intensity with decreasing temperature below Tc, consistent with the superconductivity-induced magnetic resonance found in other iron-based superconductors.
We have performed powder inelastic neutron scattering measurements on the unconventional superconductor $beta$-FeSe ($T_{rm c} simeq 8,mathrm{K}$). The spectra reveal highly dispersive paramagnetic fluctuations emerging from the square-lattice wave v
We study the effect of combining spin fluctuations and forward scattering electron-phonon ({eph}) coupling on the superconductivity in the FeSe/SrTiO$_3$ system modeled by a phenomenological two-band Hubbard model with long-range {eph} interactions.
Recent nuclear magnetic resonance studies [A. Pustogow {it et al.}, arXiv:1904.00047] have challenged the prevalent chiral triplet pairing scenario proposed for Sr$_2$RuO$_4$. To provide guidance from microscopic theory as to which other pair states
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) sta
Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the i