ترغب بنشر مسار تعليمي؟ اضغط هنا

Team and Person-by-Person Optimality Conditions of Differential Decision Systems

205   0   0.0 ( 0 )
 نشر من قبل Themistoklis Charalambous
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we derive team and person-by-person optimality conditions for distributed differential decision systems with different or decentralized information structures. The necessary conditions of optimality are given in terms of Hamiltonian system of equations consisting of a coupled backward and forward differential equations and a Hamiltonian projected onto the subspace generated by the decentralized information structures. Under certain global convexity conditions it is shown that the optimality conitions are also sufficient.

قيم البحث

اقرأ أيضاً

251 - Jingrui Sun 2020
The paper studies the open-loop saddle point and the open-loop lower and upper values, as well as their relationship for two-person zero-sum stochastic linear-quadratic (LQ, for short) differential games with deterministic coefficients. It derives a necessary condition for the finiteness of the open-loop lower and upper values and a sufficient condition for the existence of an open-loop saddle point. It turns out that under the sufficient condition, a strongly regular solution to the associated Riccati equation uniquely exists, in terms of which a closed-loop representation is further established for the open-loop saddle point. Examples are presented to show that the finiteness of the open-loop lower and upper values does not ensure the existence of an open-loop saddle point in general. But for the classical deterministic LQ game, these two issues are equivalent and both imply the solvability of the Riccati equation, for which an explicit representation of the solution is obtained.
Activity analysis in which multiple people interact across a large space is challenging due to the interplay of individual actions and collective group dynamics. We propose an end-to-end approach for learning person trajectory representations for gro up activity analysis. The learned representations encode rich spatio-temporal dependencies and capture useful motion patterns for recognizing individual events, as well as characteristic group dynamics that can be used to identify groups from their trajectories alone. We develop our deep learning approach in the context of team sports, which provide well-defined sets of events (e.g. pass, shot) and groups of people (teams). Analysis of events and team formations using NHL hockey and NBA basketball datasets demonstrate the generality of our approach.
116 - Yu-HOng Dai , Liwei Zhang 2020
Minimax optimization problems arises from both modern machine learning including generative adversarial networks, adversarial training and multi-agent reinforcement learning, as well as from tradition research areas such as saddle point problems, num erical partial differential equations and optimality conditions of equality constrained optimization. For the unconstrained continuous nonconvex-nonconcave situation, Jin, Netrapalli and Jordan (2019) carefully considered the very basic question: what is a proper definition of local optima of a minimax optimization problem, and proposed a proper definition of local optimality called local minimax. We shall extend the definition of local minimax point to constrained nonconvex-nonconcave minimax optimization problems. By analyzing Jacobian uniqueness conditions for the lower-level maximization problem and the strong regularity of Karush-Kuhn-Tucker conditions of the maximization problem, we provide both necessary optimality conditions and sufficient optimality conditions for the local minimax points of constrained minimax optimization problems.
54 - Song-Kyoo Kim 2021
This paper is dealing with another multiple person game model under the antagonistic duel type setup. The most flexible multiple person duel game is analytically solved and the explicit formulas are solved to determine the time dependent duel game mo del by using the first exceed theory. Unlike conventional two-person duel game, multiple battle fields are introduced in the paper and each battle field becomes shooting ground of pairwise players. This model is targeted for real-world situations especially for selected target shooting scenarios. An analogue of the theory in the paper is designed for solving the best shooting time within multiple battle fields. This new proposed model is fully mathematically explained to be adapted in various domains including the strategies and operations.
135 - Kuang Bai , Jane Ye 2020
The bilevel program is an optimization problem where the constraint involves solutions to a parametric optimization problem. It is well-known that the value function reformulation provides an equivalent single-level optimization problem but it result s in a nonsmooth optimization problem which never satisfies the usual constraint qualification such as the Mangasarian-Fromovitz constraint qualification (MFCQ). In this paper we show that even the first order sufficient condition for metric subregularity (which is in general weaker than MFCQ) fails at each feasible point of the bilevel program. We introduce the concept of directional calmness condition and show that under {the} directional calmness condition, the directional necessary optimality condition holds. {While the directional optimality condition is in general sharper than the non-directional one,} the directional calmness condition is in general weaker than the classical calmness condition and hence is more likely to hold. {We perform the directional sensitivity analysis of the value function and} propose the directional quasi-normality as a sufficient condition for the directional calmness. An example is given to show that the directional quasi-normality condition may hold for the bilevel program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا