ﻻ يوجد ملخص باللغة العربية
Minimax optimization problems arises from both modern machine learning including generative adversarial networks, adversarial training and multi-agent reinforcement learning, as well as from tradition research areas such as saddle point problems, numerical partial differential equations and optimality conditions of equality constrained optimization. For the unconstrained continuous nonconvex-nonconcave situation, Jin, Netrapalli and Jordan (2019) carefully considered the very basic question: what is a proper definition of local optima of a minimax optimization problem, and proposed a proper definition of local optimality called local minimax. We shall extend the definition of local minimax point to constrained nonconvex-nonconcave minimax optimization problems. By analyzing Jacobian uniqueness conditions for the lower-level maximization problem and the strong regularity of Karush-Kuhn-Tucker conditions of the maximization problem, we provide both necessary optimality conditions and sufficient optimality conditions for the local minimax points of constrained minimax optimization problems.
In this paper we study second-order optimality conditions for non-convex set-constrained optimization problems. For a convex set-constrained optimization problem, it is well-known that second-order optimality conditions involve the support function o
Hidden convex optimization is such a class of nonconvex optimization problems that can be globally solved in polynomial time via equivalent convex programming reformulations. In this paper, we focus on checking local optimality in hidden convex optim
The bilevel program is an optimization problem where the constraint involves solutions to a parametric optimization problem. It is well-known that the value function reformulation provides an equivalent single-level optimization problem but it result
We prove the following uniqueness result for the buckling plate. Assume there exists a smooth domain which minimizes the first buckling eigenvalue for a plate among all smooth domains of given volume. Then the domain must be a ball. The proof uses th
We expand the scope of the alternating direction method of multipliers (ADMM). Specifically, we show that ADMM, when employed to solve problems with multiaffine constraints that satisfy certain verifiable assumptions, converges to the set of constrai