ﻻ يوجد ملخص باللغة العربية
The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intra-cluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of strong lensing selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 strong lensing clusters, the fraction of clusters that have [OII]3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 angstrom break, D_4000, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R_arc, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [OII] emission and D_4000 as a function of R_arc, a proxy observable for SL cross-sections. D_4000 is constant with all values of R_arc, and the [OII] emission fractions show no dependence on R_arc for R_arc > 10 and only very marginal evidence of increased weak [OII] emission for systems with R_arc < 10. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in strong lensing cross-sections.
Determining the structure of galaxy clusters is essential for an understanding of large scale structure in the universe, and may hold important clues to the identity and nature of dark matter particles. Moreover, the core dark matter distribution may
Galaxy cluster mass distributions offer an important test of the cold dark matter picture of structure formation, and may even contain clues about the nature of dark matter. X-ray imaging spectroscopy of relaxed systems can map cluster dark matter di
We present an axially symmetric formula to calculate the probability of finding gravitational arcs in galaxy clusters, being induced by their massive dark matter haloes, as a function of clusters redshifts and virial masses. The formula includes the
We assess how much unused strong lensing information is available in the deep emph{Hubble Space Telescope} imaging and VLT/MUSE spectroscopy of the emph{Frontier Field} clusters. As a pilot study, we analyse galaxy cluster MACS,J0416.1-2403 ($z$$=$$0
Using a combined analysis of strong lensing and galaxy dynamics, we characterize the mass distributions and M/L ratios of galaxy groups, which form an important transition regime in Lambda-CDM cosmology. By mapping the underlying mass distribution, w