ﻻ يوجد ملخص باللغة العربية
Motivated by recent photoemission experiments on the surface of topological insulators we compute the spectrum of driven topological surface excitations in the presence of an external light source. We completely characterize the spectral function of these non-equilibrium electron excitations for both linear and circular polarizations of the incident light. We find that in the latter case, the circularly polarized light gaps out the surface states, whereas linear polarization gives rise to an anisotropic metal with multiple Dirac cones. We compare the sizes of the gaps with recent pump-probe photoemission measurements and find good agreement. We also identify theoretically several new features in the time-dependent spectral function, such as shadow Dirac cones.
The surfaces of three dimensional topological insulators (3D TIs) are generally described as Dirac metals, with a single Dirac cone. It was previously believed that a gapped surface implied breaking of either time reversal $mathcal T$ or U(1) charge
The Kondo insulator SmB6 has long been known to exhibit low temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art la
The electronic structure of Bi2Se3 is studied by angle-resolved photoemission and density functional theory. We show that the instability of the surface electronic properties, observed even in ultra-high-vacuum conditions, can be overcome via in-situ
The Kondo insulator SmB6 has long been known to exhibit low temperature (T < 10K) transport anomaly and has recently attracted attention as a new topological insulator candidate. By combining low-temperature and high energy-momentum resolution of the
The resistance of a conventional insulator diverges as temperature approaches zero. The peculiar low temperature resistivity saturation in the 4f Kondo insulator (KI) SmB6 has spurred proposals of a correlation-driven topological Kondo insulator (TKI