ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping dependence of the spin excitations in Fe-based superconductors Fe1+yTe1-xSex

129   0   0.0 ( 0 )
 نشر من قبل Andrew Christianson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fe1+yTe1-xSex series of materials is one of the prototype families of Fe-based superconductors. To provide further insight into these materials we present systematic inelastic neutron scattering measurements of the low energy spin excitations for x=0.27, 0.36, 0.40, 0.49. These measurements show an evolution of incommensurate spin excitations towards the (1/2 1/2 0) wave vector with doping. Concentrations (x=0.40 and 0.49) which exhibit the most robust superconducting properties have spin excitations closest to (1/2 1/2 0) and also exhibit a strong spin resonance in the spin excitation spectrum below Tc. The resonance signal appears to be closer to (1/2 1/2 0) than the underlying spin excitations. We discuss the possible relationship between superconductivity and spin excitations at the (1/2 1/2 0) wave vector and the role that interstitial Fe may play.



قيم البحث

اقرأ أيضاً

We have investigated uniaxial and hydrostatic pressure effects on superconductivity in Fe1.07Te0.88S0.12 through magnetic-susceptibility measurements down to 1.8 K. The superconducting transition temperature Tc is enhanced by out-of-plane pressure (u niaxial pressure along the c-axis); the onset temperature of the superconductivity reaches 11.8 K at 0.4 GPa. In contrast, Tc is reduced by in-plane pressure (uniaxial pressure along the ab-plane) and hydrostatic pressure. Taking into account these results, it is inferred that the superconductivity of Fe1+yTe1-xSx is enhanced when the lattice constant c considerably shrinks. This implies that the relationship between Tc and the anion height for Fe1+yTe1-xSx is similar to that applicable to most iron-based superconductors. We consider the reduction of Tc by hydrostatic pressure due to suppression of spin fluctuations because the system moves away from antiferromagnetic ordering, and the enhancement of Tc by out-of-plane pressure due to the anion height effect on Tc.
We study the spin resonance peak in recently discovered iron-based superconductors. The resonance peak observed in inelastic neutron scattering experiments agrees well with predicted results for the extended $s$-wave ($s_pm$) gap symmetry. Recent neu tron scattering measurements show that there is a disparity between longitudinal and transverse components of the dynamical spin susceptibility. Such breaking of the spin-rotational invariance in the spin-liquid phase can occur due to spin-orbit coupling. We study the role of the spin-orbit interaction in the multiorbital model for Fe-pnictides and show how it affects the spin resonance feature.
Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a centra l challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.
We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where four-fold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always four-fold symmetric. We argue this implies small nematic susceptibility and hence insignificant nematic fluctuation in optimally doped iron pnictides. Since Tc is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.
68 - Yiqun Liu , Yingping Mou , 2019
The study of the electromagnetic response in cuprate superconductors plays a crucial role in the understanding of the essential physics of these materials. Here the doping dependence of the electromagnetic response in cuprate superconductors is studi ed within the kinetic-energy driven superconducting mechanism. The kernel of the response function is evaluated based on the linear response approximation for a purely transverse vector potential, and can be broken up into its diamagnetic and paramagnetic parts. In particular, this paramagnetic part exactly cancels the corresponding diamagnetic part in the normal-state, and then the Meissner effect is obtained within the entire superconducting phase. Following this kernel of the response function, the electromagnetic response calculation in terms of the specular reflection model qualitatively reproduces many of the striking features observed in the experiments. In particular, the local magnetic-field profile follows an exponential law, while the superfluid density exhibits the nonlinear temperature behavior at the lowest temperatures, followed by the linear temperature dependence extending over the most of the superconducting temperature range. Moreover, the maximal value of the superfluid density occurs at around the critical doping $delta_{rm critical}sim 0.16$, and then decreases in both lower doped and higher doped regimes. The theory also shows that the nonlinear temperature dependence of the superfluid density at the lowest temperatures can be attributed to the nonlocal effects induced by the d-wave gap nodes on the electron Fermi surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا