ﻻ يوجد ملخص باللغة العربية
We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where four-fold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always four-fold symmetric. We argue this implies small nematic susceptibility and hence insignificant nematic fluctuation in optimally doped iron pnictides. Since Tc is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.
We use polarized inelastic neutron scattering (INS) to study spin excitations in superconducting NaFe0.985Co0.015As (C15) with static antiferromagnetic (AF) order along the a-axis of the orthorhombic structure and NaFe0.935Co0.045As (C45) without AF
We discuss the influence of momentum-dependent correlations on the superconducting gap structure in iron-based superconductors. Within the weak coupling approach including self-energy effects at the one-loop spin-fluctuation level, we construct a dim
We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams
We report systematic 57Fe-NMR and 75As-NMR/NQR studies on an underdoped sample (T_c=20 K), an optimally doped sample (T_c=28 K), and an overdoped sample (T_c=22 K) of oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO_{1-y}$. A micro
If strong electron-electron interactions between neighboring Fe atoms mediate the Cooper pairing in iron-pnictide superconductors, then specific and distinct anisotropic superconducting energy gaps Delta_i(k) should appear on the different electronic