ﻻ يوجد ملخص باللغة العربية
We report results from 5-day VLBI observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of $sim$1 parsec extending along the northwest-southeast direction (PA = $127^{circ}pm3^{circ}$), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3 mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution VLBA images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of $sim 8times10^{10}$ K in the 1.3 mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20--30 $mu$as (5--7 light months) resolution.
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these
The 16th magnitude quasar 3C 345 (redshift z=0.5928) shows structural and emission variability on parsec scales around a compact unresolved radio core. For the last three decades it has been closely monitored with very long baseline interferometry (V
The flat spectrum radio quasar 3C 279 is a known $gamma$-ray variable source that has recently exhibited minute-scale variability at energies $>100$ MeV. One-zone leptonic models for blazar emission are severely constrained by the short timescale var
We present the jet kinematics of the flat spectrum radio quasar (FSRQ) 4C +21.35 using time-resolved KaVA very long baseline interferometry array radio maps obtained from September 2014 to July 2016. During two out of three observing campaigns, obser
Some models of the expanding Universe predict that the astrometric proper motion of distant radio sources embedded in space-time are non-zero as the radial distance from observer to the source grows. Systematic proper motion effects would produce a p