ﻻ يوجد ملخص باللغة العربية
Observations of the FR I radio galaxy Centaurus A in radio, X-ray and gamma-ray bands provide evidence for lepton acceleration up to several TeV and clues about hadron acceleration to tens of EeV. Synthesising the available observational constraints on the physical conditions and particle content in the jets, inner lobes and giant lobes of Centaurus A, we aim to evaluate its feasibility as an ultra-high-energy cosmic-ray source. We apply several methods of determining jet power and affirm the consistency of various power estimates of ~ 1 x 10^43 erg s^-1. Employing scaling relations based on previous results for 3C 31, we estimate particle number densities in the jets, encompassing available radio through X-ray observations. Our model is compatible with the jets ingesting ~ 3 x 10^21 g s^-1 of matter via external entrainment from hot gas and ~ 7 x 10^22 g s^-1 via internal entrainment from jet-contained stars. This leads to an imbalance between the internal lobe pressure available from radiating particles and magnetic field, and our derived external pressure. Based on knowledge of the external environments of other FR I sources, we estimate the thermal pressure in the giant lobes as 1.5 x 10^-12 dyn cm^-2, from which we deduce a lower limit to the temperature of ~ 1.6 x 10^8 K. Using dynamical and buoyancy arguments, we infer ~ 440-645 Myr and ~ 560 Myr as the sound-crossing and buoyancy ages of the giant lobes respectively, inconsistent with their spectral ages. We re-investigate the feasibility of particle acceleration via stochastic processes in the lobes, placing new constraints on the energetics and on turbulent input to the lobes. The same very hot temperatures that allow self-consistency between the entrainment calculations and the missing pressure also allow stochastic UHECR acceleration models to work.
We present the results of a study that simulates trajectories of ultra-high energy cosmic rays from Centaurus A to Earth, for particle rigidities from $E/Z = 2$ EV to 100 EV, i.e., covering the possibility of primary particles as heavy as Fe nuclei w
The wealth of data collected in the last few years thanks to the Pierre Auger Observatory and recently to the Telescope Array made the problem of the origin of ultra high energy cosmic rays a genuinely experimental/observational one. The apparently c
The Pierre Auger Observatory has associated a few ultra high energy cosmic rays with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray and $gamma$-rays (MeV-TeV) because it is the nearest radio-loud active ga
The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-l
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi