ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical Challenges in Acceleration and Transport of Ultra High Energy Cosmic Rays: A Review

217   0   0.0 ( 0 )
 نشر من قبل Pasquale Blasi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pasquale Blasi




اسأل ChatGPT حول البحث

The wealth of data collected in the last few years thanks to the Pierre Auger Observatory and recently to the Telescope Array made the problem of the origin of ultra high energy cosmic rays a genuinely experimental/observational one. The apparently contradictory results provided by these experiments in terms of spectrum, chemical composition and anisotropies do not allow to reach any final conclusions as yet. Here I will discuss some of the theoretical challenges imposed by these data: in particular I will discuss some issues related to the transition from Galactic to extragalactic cosmic rays and how the different models confront our understanding of Galactic cosmic rays in terms of supernova remnants paradigm. I will also discuss the status of theories aiming at describing acceleration of cosmic rays to the highest energies in relativistic shocks and unipolar inductors.



قيم البحث

اقرأ أيضاً

180 - Todor Stanev 2010
We present the main results on the energy spectrum and composition of the highest energy cosmic rays of energy exceeding 10$^{18}$ eV obtained by the High Resolution Flys Eye and the Southern Auger Observatory. The current results are somewhat contra dictory and raise interesting questions about the origin and character of these particles.
155 - M.T. Dova 2016
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi on of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
Observations of the FR I radio galaxy Centaurus A in radio, X-ray and gamma-ray bands provide evidence for lepton acceleration up to several TeV and clues about hadron acceleration to tens of EeV. Synthesising the available observational constraints on the physical conditions and particle content in the jets, inner lobes and giant lobes of Centaurus A, we aim to evaluate its feasibility as an ultra-high-energy cosmic-ray source. We apply several methods of determining jet power and affirm the consistency of various power estimates of ~ 1 x 10^43 erg s^-1. Employing scaling relations based on previous results for 3C 31, we estimate particle number densities in the jets, encompassing available radio through X-ray observations. Our model is compatible with the jets ingesting ~ 3 x 10^21 g s^-1 of matter via external entrainment from hot gas and ~ 7 x 10^22 g s^-1 via internal entrainment from jet-contained stars. This leads to an imbalance between the internal lobe pressure available from radiating particles and magnetic field, and our derived external pressure. Based on knowledge of the external environments of other FR I sources, we estimate the thermal pressure in the giant lobes as 1.5 x 10^-12 dyn cm^-2, from which we deduce a lower limit to the temperature of ~ 1.6 x 10^8 K. Using dynamical and buoyancy arguments, we infer ~ 440-645 Myr and ~ 560 Myr as the sound-crossing and buoyancy ages of the giant lobes respectively, inconsistent with their spectral ages. We re-investigate the feasibility of particle acceleration via stochastic processes in the lobes, placing new constraints on the energetics and on turbulent input to the lobes. The same very hot temperatures that allow self-consistency between the entrainment calculations and the missing pressure also allow stochastic UHECR acceleration models to work.
243 - Pasquale Blasi 2014
While there is some level of consensus on a Galactic origin of cosmic rays up to the knee ($E_{k}sim 3times 10^{15}$ eV) and on an extragalactic origin of cosmic rays with energy above $sim 10^{19}$ eV, the debate on the genesis of cosmic rays in the intermediate energy region has received much less attention, mainly because of the ambiguity intrinsic in defining such a region. The energy range between $10^{17}$ eV and $sim 10^{19}$ eV is likely to be the place where the transition from Galactic to extragalactic cosmic rays takes place. Hence the origin of these particles, though being of the highest importance from the physics point of view, it is also one of the most difficult aspects to investigate. Here I will illustrate some ideas concerning the sites of acceleration of these particles and the questions that their investigation may help answer, including the origin of underline{ultra} high energy cosmic rays.
153 - Daniel Kuempel 2014
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic par ticles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا