ﻻ يوجد ملخص باللغة العربية
Symmetry-protected topological (SPT) phases are short-range entangled quantum phases with symmetry, which have gapped excitations in the bulk and gapless modes at the edge. In this paper, we study the SPT phases in the spin-1 Heisenberg chain with a single-ion anisotropy D, which has a quantum phase transition between a Haldane phase and a large-D phase. Using symmetric multiscale entanglement renormalization ansatz (MERA) tensor networks, we study the nonlocal order parameters for time-reversal and inversion symmetry. For the inversion symmetric MERA, we propose a brick-and-rope representation that gives a geometrical interpretation of inversion symmetric tensors. Finally, we study the symmetric renormalization group (RG) flow of the inversion symmetric string-order parameter, and show that entanglement renormalization with symmetric tensors produces proper behavior of the RG fixed-points.
We investigate the existence of symmetry-protected topological phases in one-dimensional alkaline-earth cold fermionic atoms with general half-integer nuclear spin I at half filling. In this respect, some orbital degrees of freedom are required. They
We investigate the usefulness of ground states of quantum spin chains with symmetry-protected topological order (SPTO) for measurement-based quantum computation. We show that, in spatial dimension one, if an SPTO phase supports quantum wire, then, su
We provide a classification of symmetry-protected topological (SPT) phases of many-body localized (MBL) spin and fermionic systems in one dimension. For spin systems, using tensor networks we show that all eigenstates of these phases have the same to
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demons
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many inter