ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of symmetry-protected topological many-body localized phases in one dimension

76   0   0.0 ( 0 )
 نشر من قبل Amos Chan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a classification of symmetry-protected topological (SPT) phases of many-body localized (MBL) spin and fermionic systems in one dimension. For spin systems, using tensor networks we show that all eigenstates of these phases have the same topological index as defined for SPT ground states. For unitary on-site symmetries, the MBL phases are thus labeled by the elements of the second cohomology group of the symmetry group. A similar classification is obtained for anti-unitary on-site symmetries, time-reversal symmetry being a special case with a $mathbb{Z}_2$ classification (cf. [Phys. Rev. B 98, 054204 (2018)]). For the classification of fermionic MBL phases, we propose a fermionic tensor network diagrammatic formulation. We find that fermionic MBL systems with an (anti-)unitary symmetry are classified by the elements of the (generalized) second cohomology group if parity is included into the symmetry group. However, our approach misses a $mathbb{Z}_2$ topological index expected from the classification of fermionic SPT ground states. Finally, we show that all found phases are stable to arbitrary symmetry-preserving local perturbations. Conversely, different topological phases must be separated by a transition marked by delocalized eigenstates. Finally, we demonstrate that the classification of spin systems is complete in the sense that there cannot be any additional topological indices pertaining to the properties of individual eigenstates, but there can be additional topological indices that further classify Hamiltonians.

قيم البحث

اقرأ أيضاً

We use low-depth quantum circuits, a specific type of tensor networks, to classify two-dimensional symmetry-protected topological many-body localized phases. For (anti-)unitary on-site symmetries we show that the (generalized) third cohomology class of the symmetry group is a topological invariant; however our approach leaves room for the existence of additional topological indices. We argue that our classification applies to quasi-periodic systems in two dimensions and systems with true random disorder within times which scale superexponentially with the inverse interaction strength. Our technique might be adapted to supply arguments suggesting the same classification for two-dimensional symmetry-protected topological ground states with a rigorous proof.
Many-body localized systems in which interactions and disorder come together defy the expectations of quantum statistical mechanics: In contrast to ergodic systems, they do not thermalize when undergoing nonequilibrium dynamics. What is less clear, h owever, is how topological features interplay with many-body localized phases as well as the nature of the transition between a topological and a trivial state within the latter. In this work, we numerically address these questions, using a combination of extensive tensor network calculations, specifically DMRG-X, as well as exact diagonalization, leading to a comprehensive characterization of Hamiltonian spectra and eigenstate entanglement properties.
Recent study predicts that structural disorder, serving as a bridge connecting a crystalline material to an amorphous material, can induce a topological insulator from a trivial phase. However, to experimentally observe such a topological phase trans ition is very challenging due to the difficulty in controlling structural disorder in a quantum material. Given experimental realization of randomly positioned Rydberg atoms, such a system is naturally suited to studying structural disorder induced topological phase transitions and topological amorphous phases. Motivated by the development, we study topological phases in an experimentally accessible one-dimensional amorphous Rydberg atom chain with random atom configurations. In the single-particle level, we find symmetry-protected topological amorphous insulators and a structural disorder induced topological phase transition, indicating that Rydberg atoms provide an ideal platform to experimentally observe the phenomenon using state-of-the-art technologies. Furthermore, we predict the existence of a gapless symmetry-protected topological phase of interacting bosons in the experimentally accessible system. The resultant many-body topological amorphous phase is characterized by a $mathbb{Z}_2$ invariant and the density distribution.
The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow , subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا