ترغب بنشر مسار تعليمي؟ اضغط هنا

Feature Elimination in Kernel Machines in moderately high dimensions

476   0   0.0 ( 0 )
 نشر من قبل Sayan Dasgupta
 تاريخ النشر 2013
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an approach for feature elimination in statistical learning with kernel machines, based on recursive elimination of features.We present theoretical properties of this method and show that it is uniformly consistent in finding the correct feature space under certain generalized assumptions.We present four case studies to show that the assumptions are met in most practical situations and present simulation results to demonstrate performance of the proposed approach.



قيم البحث

اقرأ أيضاً

266 - Fanghui Liu , Zhenyu Liao , 2020
In this paper, we provide a precise characterization of generalization properties of high dimensional kernel ridge regression across the under- and over-parameterized regimes, depending on whether the number of training data n exceeds the feature dim ension d. By establishing a bias-variance decomposition of the expected excess risk, we show that, while the bias is (almost) independent of d and monotonically decreases with n, the variance depends on n, d and can be unimodal or monotonically decreasing under different regularization schemes. Our refined analysis goes beyond the double descent theory by showing that, depending on the data eigen-profile and the level of regularization, the kernel regression risk curve can be a double-descent-like, bell-shaped, or monotonic function of n. Experiments on synthetic and real data are conducted to support our theoretical findings.
This paper studies the estimation of the conditional density f (x, $times$) of Y i given X i = x, from the observation of an i.i.d. sample (X i , Y i) $in$ R d , i = 1,. .. , n. We assume that f depends only on r unknown components with typically r d . We provide an adaptive fully-nonparametric strategy based on kernel rules to estimate f. To select the bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm (Wasserman and Lafferty (2006)) to detect the sparsity structure of f. More precisely, in the minimax setting, our pointwise estimator, which is adaptive to both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Its computational complexity is only O(dn log n).
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well. An e merging paradigm for describing this unexpected behavior is in terms of a emph{double descent} curve, in which increasing a models capacity causes its test error to first decrease, then increase to a maximum near the interpolation threshold, and then decrease again in the overparameterized regime. Recent efforts to explain this phenomenon theoretically have focused on simple settings, such as linear regression or kernel regression with unstructured random features, which we argue are too coarse to reveal important nuances of actual neural networks. We provide a precise high-dimensional asymptotic analysis of generalization under kernel regression with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks optimized with gradient descent. Our results reveal that the test error has non-monotonic behavior deep in the overparameterized regime and can even exhibit additional peaks and descents when the number of parameters scales quadratically with the dataset size.
In this paper we solve support vector machines in reproducing kernel Banach spaces with reproducing kernels defined on nonsymmetric domains instead of the traditional methods in reproducing kernel Hilbert spaces. Using the orthogonality of semi-inner -products, we can obtain the explicit representations of the dual (normalized-duality-mapping) elements of support vector machine solutions. In addition, we can introduce the reproduction property in a generalized native space by Fourier transform techniques such that it becomes a reproducing kernel Banach space, which can be even embedded into Sobolev spaces, and its reproducing kernel is set up by the related positive definite function. The representations of the optimal solutions of support vector machines (regularized empirical risks) in these reproducing kernel Banach spaces are formulated explicitly in terms of positive definite functions, and their finite numbers of coefficients can be computed by fixed point iteration. We also give some typical examples of reproducing kernel Banach spaces induced by Matern functions (Sobolev splines) so that their support vector machine solutions are well computable as the classical algorithms. Moreover, each of their reproducing bases includes information from multiple training data points. The concept of reproducing kernel Banach spaces offers us a new numerical tool for solving support vector machines.
This article is concerned with the spectral behavior of $p$-dimensional linear processes in the moderately high-dimensional case when both dimensionality $p$ and sample size $n$ tend to infinity so that $p/nto0$. It is shown that, under an appropriat e set of assumptions, the empirical spectral distributions of the renormalized and symmetrized sample autocovariance matrices converge almost surely to a nonrandom limit distribution supported on the real line. The key assumption is that the linear process is driven by a sequence of $p$-dimensional real or complex random vectors with i.i.d. entries possessing zero mean, unit variance and finite fourth moments, and that the $ptimes p$ linear process coefficient matrices are Hermitian and simultaneously diagonalizable. Several relaxations of these assumptions are discussed. The results put forth in this paper can help facilitate inference on model parameters, model diagnostics and prediction of future values of the linear process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا