ﻻ يوجد ملخص باللغة العربية
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well. An emerging paradigm for describing this unexpected behavior is in terms of a emph{double descent} curve, in which increasing a models capacity causes its test error to first decrease, then increase to a maximum near the interpolation threshold, and then decrease again in the overparameterized regime. Recent efforts to explain this phenomenon theoretically have focused on simple settings, such as linear regression or kernel regression with unstructured random features, which we argue are too coarse to reveal important nuances of actual neural networks. We provide a precise high-dimensional asymptotic analysis of generalization under kernel regression with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks optimized with gradient descent. Our results reveal that the test error has non-monotonic behavior deep in the overparameterized regime and can even exhibit additional peaks and descents when the number of parameters scales quadratically with the dataset size.
We analyze the convergence of the averaged stochastic gradient descent for overparameterized two-layer neural networks for regression problems. It was recently found that a neural tangent kernel (NTK) plays an important role in showing the global con
In this paper, we provide a precise characterization of generalization properties of high dimensional kernel ridge regression across the under- and over-parameterized regimes, depending on whether the number of training data n exceeds the feature dim
We present a novel neural network Maximum Mean Discrepancy (MMD) statistic by identifying a connection between neural tangent kernel (NTK) and MMD statistic. This connection enables us to develop a computationally efficient and memory-efficient appro
We study the SIMP method with a density field generated by a fully-connected neural network, taking the coordinates as inputs. In the large width limit, we show that the use of DNNs leads to a filtering effect similar to traditional filtering techniq
A recent line of work has analyzed the theoretical properties of deep neural networks via the Neural Tangent Kernel (NTK). In particular, the smallest eigenvalue of the NTK has been related to the memorization capacity, the global convergence of grad