ﻻ يوجد ملخص باللغة العربية
Carbonaceous chondrite meteorites are so far the only available samples representing carbon-rich asteroids and in order to allow future comparison with samples returned by missions such as Hayabusa 2 and OSIRIS-Rex, is important to understand their physical properties. Future characterization of asteroid primitive classes, some of them targeted by sample-return missions, requires a better understanding of their mineralogy, the consequences of the exposure to space weathering, and how both affect the reflectance behavior of these objects. In this paper, the reflectance spectra of two chemically-related carbonaceous chondrites groups, precisely the Vigrano (CVs) and Karoonda (CKs), are measured and compared. The available sample suite includes polished sections exhibiting different petrologic types: from 3 (very low degree of thermal metamorphism) to 5 (high degree of thermal metamorphism). We found that the reflective properties and the comparison with the Cg asteroid reflectance class point toward a common chondritic reservoir from which the CV-CK asteroids collisionally evolved. In that scenario the CV and CK chondrites could be originated from 221 Eos asteroid family, but because of its collisional disruption, both chondrite groups evolved separately, experiencing different stages of thermal metamorphism, annealing and space weathering.
We measured 3-micron reflectance spectra of 21 meteorites that represent all carbonaceous chondrite types available in terrestrial meteorite collections. The measurements were conducted at the Laboratory for Spectroscopy under Planetary Environmental
We analyze here a wide sample of carbonaceous chondrites from historic falls (e.g. Allende, Cold Bokkeveld, Kainsaz, Leoville, Murchison, Murray and Orgueil), and from NASA Antarctic collection in order to get clues on the role of aqueous alteration
We study the visible and near-infrared (NIR) spectral properties of different ACO populations and compare them to the independently determined properties of comets. We select our ACOs sample based on published dynamical criteria and present our own
The valence of iron has been used in terrestrial studies to trace the hydrolysis of primary silicate rocks. Here, we use a similar approach to characterize the secondary processes, namely thermal metamorphism and aqueous alteration, that have affecte
We report microscopic, cathodoluminescence, chemical and O isotopic measurements of FeO-poor isolated olivine grains (IOG) in the carbonaceous chondrites Allende (CV3), Northwest Africa 5958 (C2-ung), Northwest Africa 11086 (CM2-an), Allan Hills 7730